
GRASS GIS Vector State of the Art – Gearing towards GRASS GIS 7

Markus Metz1, Martin Landa2, Anna Petrášova3, Vaclav Petráš3, Yann Chemin4, Markus Neteler1 and The GRASS GIS Development Team
1 CRI, FEM, Italy, 2 CTU in Prague, Czech Republic, 3 NCSU, USA, 4 IWMI, Sri Lanka

The upcoming GRASS GIS 7 release improves not only raster processing and general design but the vector processing in
the first place. GRASS GIS, as a topological GIS, recognizes that the topology plays the key role in the vector processing
and analysis.

Topology ensures that adjacent geographic components in a single vector map are related. In contrast to non-
topological GIS, a border common to two areas exists only once and is shared between the two areas. Topological
representation of vector data helps to produce and maintain vector maps with clean geometry as well as enables the user
to perform certain analyses that can not be conducted with non-topological or spaghetti data. Non-topological vector
data are automatically converted to a topological representation upon import. Further more, various cleaning tools exist
to remove non-trivial topological errors.

In the upcoming GRASS GIS 7 release the vector library was particularly improved to make it faster and more
efficient with an improved internal vector file format. This new topological format reduces memory and disk space
requirements, leading to a generally faster processing. Opening an existing vector requires less memory providing
additionally support for large files. The new spatial index performs queries faster (compared to GRASS GIS 6 more
than 10 times for large vectors). As a new option the user can select a file-based version of the spatial index for large
vector data. All topological cleaning tools have been optimized with regard to processing speed, robustness, and system
requirements.

The vector engine comes with a new prototype for direct read/write support of OGR Simple Features API.
Additionally vector data can be directly exchanged with topological PostGIS 2 databases. This enables GRASS to read
and write topological primitives beside native file-based format also to the topological PostGIS 2 databases.
Considering the wide spread usage of Esri Shapefile, a non-topological format for vector data exchange, it is particularly
advantageous that GRASS GIS 7 offers advanced cleaning tools.

For power users and programmers, the new Python interface allows to directly access functions provided by the
underlying C libraries; this combines the ease of writing Python scripts with the power of optimized C functionality in
the library backend.

Abstract

The GRASS GIS native vector format stores objects in a topology format. The OGC Simple Features can be imported into and exported from
the GRASS GIS format through topological vector conversion. For attribute management several database management system (DBMS) with
SQL support are supported including SQLite (default DB backend), DBF, PostgreSQL, MySQL, ODBC.

point

line centroid boundary

Basic vector topological elements in GRASS GIS 7

Derived vector topological elements in GRASS GIS 7

Node

Node

Centroid

Vertex

Node

Vertex
Vertex

Vertex

Boundary

B
oundary

B
o
u
n
d
a
ry

V
e
rt
e
x

Node

Node

Isle

V
e
rt
e
x Isle

Figure 1a: Basic and derived topological elements in GRASS GIS 7

The following basic topological elements can be edited directly: point, centroid, line, and boundary. A GRASS vector map can contain
a combination of several different types of the elements. From these basic geometry types the following derived topological elements
can be generated: area (closed ring of boundaries + centroid), isle (closed ring of boundaries, no centroid), and node (at both ends of li-
nes/boundaries). Isles and Nodes are not visible to the user. Furthermore face, kernel (3D centroid) and volume (3D area) as defined in the format.

Figure 1b: Topology changes from version 6 to 7 after (points and centroids are represented by the nodes) [Landa 2013]

Topology support

GRASS GIS 7 supports various data sources in read and write access. Beside native file-based raster and vector format
GRASS allows to specify external data sources through GDAL/OGR library. GRASS GIS 7 also natively supports
PostGIS database including its topological extension.

Figure 2: Supported data sources

Data Sources

PyGRASS [Zambelli 2013] is an object-oriented Python API which allows efficient manipulation with GRASS rasters
and vectors. It is easy-to-use but its performance is comparable to C code since it calls GRASS C API behind the scenes.

create a point

>>> point = Point ()

>>> point.x = 150.65

>>> point.y = 368.50

>>> point

>>> Point(150.650000, 368.500000)

distance to another point

>>> point.distance(Point(160.2, 372.6))

10.39290623454286

conversion to Well -known text (WKT)

>>> point.get_wkt ()

’POINT(150.650000 368.500000)’

bounding box of a line

>>> line = Line ([(5, 12), (6, 13), (4, 19)])

>>> line.bbox()

Bbox(19.0, 12.0, 6.0, 4.0)

PyGRASS: fast Python API

• v.distance: Calculates distances from points, lines, or areas to points, lines, or areas.

• v.overlay: The processing speed has been substantially improved.

• v.net.*: All vector network analysis tools provide now fine control over node costs.

• v.voronoi: New option to create Voronoi diagrams for areas.

• v.rectify: Vector data can now be georeferenced using various methods for 2D and 3D coordinate transformation.

Other Improvements & Additions

The native GRASS-PostGIS data provider allows the GRASS vector library to read and write PostGIS data directly
without any external geospatial library. Beside simple features the provider also allows to work with topological elements
through PostGIS Topology extension.

The support of PostGIS 2 Topology in GRASS GIS 7 is as follows:

• Points are stored as isolated nodes (containing face is null),

• Centroids are stored as isolated nodes (containing face is not null),

• Lines are stored as edges (left face and right face is 0),

• Boundaries are stored as edges,

• Areas are stored as faces (with id > 0),

• Isles are stored as faces (with id <= 0) (including universal face defined by PostGIS Topology).

Additional topological data related to nodes, lines, areas, and isles are stored in separated tables (see figure bellow).

Figure 3: Extended PostGIS Topology structure

Dedicated modules

• v.out.postgis: Exports a vector map layer to PostGIS feature table.

• v.external: Creates a new pseudo-vector map as a link to a PostGIS feature table.

• v.external.out: Defines vector output format.

GRASS GIS-PostGIS data provider: PostGIS 2 support

The Lidar library (www.liblas.org) used by GRASS GIS permits the import of LAS Lidar data. The imported data
can be in raster (r.in.lidar using statistics of choice) or in vector format (v.in.lidar).

Figure 4: Example for LAS support in GRASS GIS 7: rapid LAS data assessment through binning

On-farm water storage study with lidar data in NSW (Australia) developed a full remote sensing monitoring me-
thodology of water availability with lidar-based bathymetric survey and multi-source remote sensing survey [Chemin 2011].

Figure 5: On-Farm-Water-Storage Lidar survey and Depth-Volume-Area surveying [Chemin 2011]

Lidar

GRASS 7 has 3D topological capabilities, as described in Figure 5a. An application to buildings is found in Figure 5b.

Figure 5a: 3D object with a hole Figure 5b: 3D model of Chancellor’s House (NC State University)
in GRASS GIS topology model visualized in GRASS GIS

3D

TGRASS [Gebbert 2014] provides support for large spatio-temporal data handling and analysis, and is fully integrated
into GRASS GIS 7. It introduces the concept of space-time dataset as a series of vector, raster, or 3D raster data with
temporal metadata. In the simple example below, we computed a series of vector data representing particles in a water
flow simulation, created a space-time dataset and registered the vectors to this dataset based on time stamps assigned
during the vector creation. The result can be then quickly visualized using GRASS GIS Animation Tool.

r.sim.water -t elevation=elev lid792 1m dx=dx dy=dy depth=depth outwalk=walker outiter=1

t.create output=particles type=stvds temporaltype=relative semantictype=mean title="Particles" desc="Particles"

t.register input=particles maps=`g.mlist --q type=vect pattern=walker* separator=,` type=vect

g.gui.animation stvds=particles

see animation online

TGRASS: temporal framework

[Chemin 2011] Chemin & Rabbani, 2011. International Journal of Geoinformatics, 7(3):1-6.
[Gebbert 2014] Gebbert & Pebesma, 2014. TGRASS: A temporal GIS for field based environmental modeling,

Environmental Modelling & Software 53:1–12.
[Landa 2013] Landa, 2013. Vektorová architektura systému GRASS GIS [GRASS GIS Vector Architecture].

PhD thesis, CTU in Prague, Czech Republic.
[Neteler 2005] Neteler & Grasso & Michelazzi & Miori & Merler & Furlanello, 2005. International Journal of

Geoinformatics, 1(1):51-61.
[Neteler 2012] Neteler & Bowman & Landa & Metz, 2012. Environment & Modeling Software, 31:124-130

[Zambelli 2013] Zambelli & Gebbert & Ciolli, 2013. PyGRASS: An Object Oriented Python API for GRASS
GIS. ISPRS International Journal of Geo-Information 2.1:201-219.

Project

www.osgeo.org grass.osgeo.org

2014 GRASS Development Team

References

