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Introduction
 As mantle rocks flow, strain may localize in response to rheological processes that give rise to mantle shear zone 
where high-strain deformation and substantial grain size reduction commonly occur (Boullier and Gueguen, 1975; 
Drury et al., 1991; Warren and Hirth, 2006). Mantle viscous strain localization is often attributed to phase mixing that 
would enhance grain-size-sensitive granular flow - mostly controlled by Grain Boundary Sliding (GBS) - through grain 
boundary pinning (Warren and Hirth, 2006). However, recent data show that GBS alone cannot end-up with randomly 
mixed phases (Hiraga et al., 2013), questioning the nature of mantle ductile strain localization. Here we show micro-
probe analyses, coupled EDX/EBSD mapping and olivine Lattice Preferred Orientation (LPO) accross a shear zone of 
peridotite in the Ronda massif (Spain). We highlight syn-tectonic water draining towards fine-grained layers where 
both GBS and phase mixing occur. Our results suggest that water converges as a result of GBS-induced creep cavitation 
during strain localization, promoting phase mixing through dissolution/precipitation of secondary phases in newly 
formed cavities. This process provides a key for the relationships between GBS and phase mixing, and hence, for the 
origin of viscous strain localization in the mantle.
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 Our findings highlight - for the first time in a mantle shear zone - the occurrence of granular fluid 
pump that results from creep cavitation in fine-grained layer. Through nucleation of new phases in creeping 
cavities, this strain-induced process provides a key for strain localization promoted by phase mixing and 
grain boundary pinning, both required to enhance granular flow and subsequent strain weakening. This pro-
cess also accounts for 1/ the intimate relationship between phase mixing and grain boundary sliding, and 2/ 
the strain-induced layering in the ultramylonite. We stress however that natural documentations of granular 
fluid pump only concerned so far shear zones developed at a maximum pressure/depth of 10 kbar/30 km 
(Geraud et al., 1995; Fusseis et al., 2009; this study), whereas water circulation occurs at depth a way higher 
than 30 km. At these great depths, we have no clue whether strain capacities are still enough to overcome 
pressure and generate GBS-induced micro-cavities. We therefore conclude with the following issue, poten-
tial object of future investigations: what is the depth/pressure threshold of mantle granular fluid pump?

Conclusion

  Strain localization affects a spinel-bearing olivine-rich harzburgite in 
the southwestern Ronda peridotite     . It occurred during decompression and 
cooling from 10 to 5 kbar and from at least 1000°C to 700°C, respectively 
(Hidas et al., 2012). Both the protolith and ultramylonite have similar com-
positions; no metamorphic reactions are observed, although appearing of 
plagioclase after spinel have been described in near pyroxenite layers (Hidas 
et al., 2013). The shear zone shows a progressive transition from the proto-
lith to ultramylonite, giving rise to a transitional protolith where fine-grained 
layers develop along pyroxenes porphyroclasts   . Excepted for these fine-
grained layers that show near random LPO, both the protolith and transitio-
nal protolith develop E-type olivine fabric     , typical of plastic deformation 
in conditions of moderate water content (Katayama et al., 2004). 
 In contrast to the protolith, the ultramylonite shows a strain-related 
layering of coarse-grained and medium-grained layers, where bands of very 
fine grains occur     . While olivine of the coarse-grained layers have a dunitic 
composition      and develop D-type fabric    , which is typical of anhydrous 
olivine (Bystricky et al., 2000), the medium-grained layers show overall 
E-type fabric, but also C-type fabric    in some areas nearby fine-grained 
layers. This latter is typical of water-rich conditions (Katayama et al., 2004). 
Futhermore, microprobe analyses and coupled EBSD/EDX mapping in 
fine-grained layers reveal 1/ a substantial increase in pyroxenes content 
(enrichment in Silicon and Calcium), and 2/ the presence of amphiboles 
where grain size is the smallest    . A perfect phase mixing occurs in these 
layers. Finally, observations of quadruple junctions at grain boundaries and 
a randomization of the olivine fabric with grain size reduction both indicate 
an enhancing of GBS-controlled granular flow at the expense of plastic flow 
in fine-grained layers    (Warren and Hirth, 2006; Précigout and Hirth, 2014).

Results summary
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