

Assessing 5 years of GOSAT Proxy XCH₄ data and associated uncertainties

Robert Parker (1,2), Hartmut Boesch (1,2), Peter Somkuti (1), Paul Palmer (3,2), Liang Feng (3,2), Peter Bergamaschi (4), and Frederic Chevallier (5)

(1) University Of Leicester, Earth Observation Science, Leicester, United Kingdom (rjp23@le.ac.uk), (2) National Centre for Earth Observation, United Kingdom, (3) School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom, (4) Air and Climate Unit, Institute for Environment and Sustainability, Joint Research Centre, Italy, (5) Lab. des Sciences du Climat et de l'Environnement, France

We present 5 years of GOSAT XCH₄ retrieved using the "proxy" approach. The Proxy XCH₄ data is validated against ground-based TCCON observations and is found to be of high-quality with a small bias of 4.8 ppb (\sim 0.27%) and a single-sounding precision of 13.4 ppb (\sim 0.74%). For the first time the XCH₄/XCO₂ ratio component of the Proxy retrieval is validated (bias of 0.014 ppb/ppm (\sim 0.3%), single-sounding precision of 0.033 ppb/ppm (\sim 0.72%).

The uncertainty relating to the model XCO_2 component of the Proxy XCH_4 is assessed through the use of an ensemble of XCO_2 models. While each individual XCO_2 model is found to agree well with the TCCON validation data (r = 0.94-0.97), it is not possible to select one model as the best based on these comparisons. The median XCO_2 value of the ensemble has a smaller scatter against TCCON than any of the individual models (0.92 ppm) whilst maintaining a small bias (0.15 ppm). This model median XCO_2 is used to calculate the Proxy XCH_4 with the maximum deviation from the median used as an estimate of the uncertainty.

We compare this uncertainty to the a posteriori retrieval error and find typically that the model XCO_2 uncertainty becomes significant during summer months where the a posteriori error is at its lowest.

We assess the significance of these uncertainties on flux inversion by comparing against the GOSAT-MACC XCH₄ differences. We find that for the majority of regions the differences are much larger than the estimated uncertainties. Our findings show that useful information will be provided to the inversions for the majority of regions in addition to that already provided by the assimilated in-situ measurements.