Geophysical Research Abstracts Vol. 17, EGU2015-10662-1, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License.

Daily growth and tidal rhythms resolved in modern and Miocene giant clams via ultra-high resolution LA-ICPMS analysis and image processing

Viola Warter and Wolfgang Müller

Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK (Viola.Warter@rhul.ac.uk)

Giant clams (*Tridacna spp.*) are particularly attractive sclerochronological archives owing to their rapid shell growth rates, longevity and resultant exceptional shell size and thickness. The occurrence of a well-visible seasonal banding pattern within the aragonite shell of *Tridacna spp.* is well-known and has been investigated by numerous studies to reconstruct (past)environmental conditions^[1,2,3]. Less-utilized is the fact that the bivalve secretes its shell daily, recorded as microscopically visible daily growth increments in the shell structure^[4,5]. Thus, environmental changes - reflected as variations in the shell's geochemical inventory - are continuously recorded in chronological order and at extremely high temporal resolution (possibly even hourly).

To resolve daily compositional variability in giant clams using LA-ICPMS, we use an adjustable rotating rectangular laser aperture (spot size on target: $4 \times 50 \ \mu m$) of our RESOlution M-50 (193 nm ArF) with Laurin two-volume sample cell^[6]. We performed continuous path ablation at very slow profiling speed ($\leq 1.5 \ \mu m/s$) via careful alignment of the rectangular slit parallel to visible daily growth increments in thin sections. ICPMS total sweep times were kept short ($\leq 350 \ ms$) by analysing maximal 5 isotopes simultaneously.

Our initial results showcase that compositional cyclicity at the $\sim 15~\mu m$ scale is easily resolvable. In our investigated modern and Miocene (~ 9 Ma) giant clam shells^[3], striking co-variation of Mg/Ca, Sr/Ca, B/Ca (and Ba/Ca) is discernible, yet also tantalizingly, sub-daily shifts between these element/Ca ratios can be observed. These results expand upon earlier NanoSIMS work by Sano et al $(2012)^{[5]}$, who report diurnal variations in Sr/Ca, which they link to the daily light cycle. Our initial results of a year-long, ultra-high resolution Miocene record show that a ~ 15 -day periodicity exists superimposed on the observed daily growth cyclicity, corroborating the 14-day periodicity in the sclerochronological pattern of a *Tridacna squamosa* shell linked to tidal rhythms^[7].

The geochemical records are complemented using image processing analysis. Preliminary results reveal that elemental composition varies with pixel intensity, resulting in consistent measurements of increment widths obtained from both LA-ICPMS daily resolved profiles and high resolution microscope images.

- [1] Elliot et al., 2009. Palaeo-3, 280, 132-142.
- [2] Batenburg et al., 2011. Palaeo-3, 306, 75-81.
- [3] Warter et al., 2015. Palaios, 30, 66-82.
- [4] Aharon and Chappell, 1986. Palaeo-3, 56, 337-379.
- [5] Sano et al., 2012. Nature Communications, 3, doi: 10.1038/NCOMMS1763.
- [6] Müller et al., 2009. JAAS, 24, 209-214.
- [7] Pannella and MacClintock, 1968. In: Macurda, D.B., Jr., paleobiological aspects of growth and development: A Symposium. Paleontological Society Memoir, 2, 64-80.