

Effect of different agronomic management practices on greenhouse gas emissions and nutrient cycling in a long-term field trial

Philipp Koal (1), Rolf Schilling (1), Georg Gerl (2), Karin Pritsch (1), and Jean Charles Munch (1)

(1) Helmholtz Zentrum Munich-Institute of Soil Ecology, Neuherberg, D-85758 Neuherberg, Germany, (2) Research Farm Scheyern, Versuchsgut Scheyern, Priehof, D-85298 Scheyern, Germany

In order to achieve a reduction of greenhouse gas emissions, modern agronomic management practices need to be established. Therefore, to assess the effect of different farming practices on greenhouse gas emissions, reliable data are required. The experiment covers and compares two main aspects of agricultural management for a better implementation of sustainable land use. The focus lies on the determination and interpretation of greenhouse gas emissions, however, regarding in each case a different agricultural management system, namely an organic farming system and an integrated farming system where the effect of diverse tillage systems and fertilisation practices are observed. In addition, with analysis of the alterable biological, physical and chemical soil properties a link between the impact of different management systems on greenhouse gas emissions and the observed cycle of matter in the soil, especially the nitrogen and carbon cycle, will be enabled.

Measurements have been carried out on long-term field trials at the Research Farm Scheyern located in a Tertiary hilly landscape approximately 40 km north of Munich (South Germany). The long-term field trials of the organic and integrated farming system were started in 1992. Since then parcels of land (each around 0.2-0.4 ha) with a particular interior plot set-up have been conducted with the same crop rotation, tillage and fertilisation practice referring to organic and integrated farming management. Thus, the management impacts on the soil of more than 20 years are being examined.

Fluxes of CH₄, N₂O and CO₂ have been monitored since 2007 for the integrated farming system trial and since 2012 for the organic farming system trial using an automated system which consists of chambers (0.4 m² area) with a motor-driven lid, an automated gas sampling unit, an on-line gas chromatographic analysis system, and a control and data logging unit. Precipitation and temperature data have been observed for each experimental field to include weather effects.

The main outcomes are the analysis of temporal and spatial dynamics of greenhouse gas emissions influenced by management practice events (i.a. fertilisation, crop incorporation and tillage) and weather effects (drying-rewetting, freezing-thawing, intense rainfall and dry periods) and the creation of impact studies comparing the farming systems (organic vs integrated) and the management practices (minimum tillage vs conventional tillage; high vs low fertilisation). Physical, chemical and biological soil properties (i.a. texture, mineral nitrogen, soil organic carbon and microbial biomass) have been examined in short time intervals to aggregate the parameters and processes influencing the greenhouse gas emissions and to build a linkage between soil organic matter and greenhouse gas emissions. Moreover, with the comparison of the investigated similar long-term field experiments and the collected agronomic data (harvest, tillage and fertilisation practices) the study could contribute to a contemporary set of "best management practices" and could provide a help to create decision tools for stakeholders such as farmers.