

Discontinuities detection using transmission electrical resistivity imaging

Nolwenn Lesparre (1), Justo Cabrera (1), Alistair Boyle (2), Bartłomiej Grychtol (3), and Andy Adler (2)

(1) Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France (nolwenn.lesparre@irsn.fr), (2) Carleton University, Ottawa, Canada, (3) Fraunhofer PAMB, Mannheim, Germany

In the context of nuclear waste storage, low permeability clays are investigated as potential geological barrier. Discontinuities in such formations might facilitate the radionuclide transport to the environment. The underground platform of Tournemire (Aveyron, France) presents the opportunity to perform in-situ experiments to evaluate the potential of geophysical methods to detect and characterize the presence of discontinuities in the sub-surface. In this work, we apply transmission electrical resistivity tomography to image the medium surrounding a regional fault. A specific array of electrodes were set up, adapted for the characterization of the fault. Electrodes were placed along the tunnel as well as at the surface above the tunnel on both sides of the fault. The objective of a such geometry is to acquire data in transmission across the massif in addition to classical protocol such as Schlumberger or dipole-dipole in order to better cover the sounded medium. 3D models considering the gallery geometry, the topography and the injection of current in transmission through the massif were developed for the analysis of such particular data sets. For the reconstruction of the medium electrical resistivity, the parametrization of the inverse problem was adapted to the geometry of the experience in a scope to reduce the inversion under-determination. The resulting image obtained with classical protocols and transmission current injection is compared to an image obtained using only classical protocols to better highlight the interest of a transmission experiment in terms of resolution and penetration depth. The addition of protocols in transmission allows a better coverage of the sounded medium so the resulting image presents a better resolution at higher depths than the image resulting from a single profile of electrodes. The proposed configuration of electrical resistivity measurements in transmission is then promising for hydrogeophysical studies, in particular for studies of karstic systems where natural cavities could be used for underground electrodes deployment.