

Non-homogeneity of isotopic labelling in 15N gas flux studies: theory, some observations and possible lessons

Reinhard Well (1), Caroline Buchen (1), Marianna Deppe (1), Wolfram Eschenbach (), Andreas Gattinger (2), Anette Giesemann (1), Hans-Martin Krause (2), and Dominika Lewicka-Szczebak ()

(1) Thünen-Institut, Agrarklimaschutz, Braunschweig, Germany, (2) Research Institute of Organic Agriculture (FiBL), Frick, Switzerland

Quantifying dinitrogen (N_{2}) and nitrous oxide (N_2O) fluxes from different soil N pools and processes can be accomplished using the ¹⁵N tracer technique but this is subject to four different sources of bias (i. – iv.). This approach includes ¹⁵N labelling of selected N pools in soil and subsequent isotope analysis of all relevant N pools as well as of gas samples from enclosures, i.e. mixtures of soil-derived and atmospheric N₂ and N₂O. Depending on the processes of interest, there may be ¹⁵N labelling of one or several N pools, were several labelling treatment are needed in the latter case (e.g. Müller et al., 2004). Measuring pool-derived N₂ or N₂O has been shown to include two calculation problems, (i.) arising from multiple pools (e.g. Arah, 1992) and (ii.) dealing with the nonrandom distribution of N₂ and N₂O mole masses (Hauck et al., 1958). Non-randomness can be solved if m/z 28, 29 and 30 are correctly analysed and the ¹⁵N enrichment of one (to distinguish two pools, i.e. soil and atmosphere) or two pools (in case of three pools) is known (Spott & Stange, 2008).

Moreover (iii.), NO_3^- pools generating N_2 and N_2O via denitrification can be identical or different, e.g. if N_2O evolved from higher enriched NO_3^- in deeper soil was more reduced to N_2 compared to N_2O evolved from N_2O from shallow soil with lower enrichment, or vice versa.

Apportioning N₂O fluxes to NH₄⁺ (nitrification and/or nitrifier denitrification) and NO₃⁻ (denitrification) is often conducted by NO₃⁻ labeling, measuring δ^{15} N of emitted N₂O and applying mixing equations were the measured ¹⁵N enrichment of NH₄⁺ and NO₃⁻ pool is used. However, this assumes that the average ¹⁵N enrichment of NH₄⁺ and NO₃⁻ in the soil is identical to the enrichment in the active soil domain producing N₂ and/or N₂O. Violation of this precondition must lead to bias in source apportionment (iv.), but to our knowledge this has not been investigated until now.

Here we present conceptual models and model calculations addressing cases iii. and iv.. Furthermore we present some experimental data illustrating this. These include two data sets from denitrification experiments exhibiting substantial deviations in ¹⁵N enrichment between the N pools producing N₂ and N₂O. Moreover, results from a lab incubation study to quantify NH_4^+ -derived N₂O with increasing NH_4^+ amendment under conditions favouring nitrification are shown, were non-labelled NH_4^+ was added together with ¹⁵N labelled NO_3^- . Here we found large deviations between the ¹⁵N enrichment of NO_3^- in extracted soil water and the ¹⁵N enrichment of the labelled N pool as calculated from N₂O isotopologues (Bergsma et al., 2001). We think that this reflects type iv. bias, probably because enrichment of NO_3^- in anoxic micro-sites was less diluted by non-labelled NO_3^- from nitrification compared to NO_3^- in oxic zones. Our data analysis provides a means to overcome bias iv. and thus to obtain correct source apportionment.

References:

Arah, J.R.M. (1992): Soil Sci. Soc. Am. J. 56, 795 - 800, 1992.

Bergsma, T. et al. (2001): Env. Sci. & Technol. 35(21): 4307-4312.

Hauck, R.D., et al.(1958): Soil Science 86, 287 - 291, 1958.

Lewicka-Szczebak, D. et al.(2013): Rapid Comm. Mass Spectrom., 27 1548-1558.

Müller, C. et al. (2004): Soil Biol. Biochem. 36(4): 619-632.

Mulvaney, R.L.(1984):. Soil Sci. Soc. Am. J. 48:690 - 692.

Spott, O, et al.. (2006): Rapid Comm. Mass Spectrom., 20: 3267-3274.

Spott, O. and C. F. Stange (2007): Rapid Comm. Mass Spectrom., 21: 2398-2406.