Geophysical Research Abstracts Vol. 17, EGU2015-12894, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License.

Characterization and statistics of rogue waves in random sea states

Constance Schober

University of Central Florida, Mathematics, Orlando, United States (drschober@gmail.com)

Rogue waves are frequently modeled using the nonlinear Schrodinger (NLS) equation and it's higher order extensions due to Dyste and Trulsen (HONLS). In [2] Sura shows that the kurtosis (κ) and skewness (s) of deep ocean field data obey the quadratic inequality $\kappa \geq 3/2s^2 + \kappa_0$ which is not satisfied by Gaussian or double exponential noise. Here we show that sea states modeled using the HONLS equation and random phase JONSWAP initial data exhibit a significant deviation from Gaussianity and satisfy Sura's relation between the skewness and kurtosis, thus providing a realistic picture of sea surface height variability.

In [1] we introduced the "splitting distance", δ , between two consecutive simple points in the Floquet spectrum of the associated Zakharov-Shabaat problem of the NLS equation, as a spectral measure of proximity to instabilities in the wavefield and correlated the development of localized rogue waves in random sea states characterized by JONSWAP spectra with δ . Here we take a closer look at the nonlinear spectral decomposition and characterization of JONSWAP solutions of the NLS equation. For the HONLS equation, δ evolves in time. We determine both the initial splitting distance δ_0 and the time averaged splitting distance δ_{avg} . From a practical standpoint the use of δ_{avg} doesn't allow for a useful predictive tool as one must follow the evolution of $\delta(t)$. However, we show $\delta(t)$ remains close to δ_0 and the the maximum strength, skewness, and kurtosis of the sea states are well predicted by the initial δ_0 .

References

- [1] A.L. Islas and C.M. Schober, Predicting rogue waves in random oceanic sea states, Phys. Fluids 17 (2005).
- [2] P. Sura and S.T. Gille, Stochastic dynamics of sea surface height variability, J. Phys. Oceanogr. 40 (2010).