

Modeling of decomposition activity and priming effect in soil using the versatile index of microbial physiological state

Sergey Blagodatskiy (a,b)

(a) Institute for Plant Production and Agroecology in the Tropics and Subtropics, University of Hohenheim, Germany, (b) Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Russia

The implementation of microbial biomass in soil organic matter (SOM) models is still unresolved issue. The approaches using explicit description of microbial biomass (decomposer) interaction with SOM usually cannot be easily verified by means of experimental estimating of total microbial biomass dynamics. Standard experimental methods, such as fumigation extraction or direct microscopic count, does not represent microbial activity (Blagodatskaya and Kuzyakov, 2013), which is essential for the control of decomposition rate. More advanced approaches, explicitly simulating intracellular metabolic activity (Resat et al., 2012) and e.g. production and turnover of extracellular enzymes (Lawrence et al., 2009) are prohibitively complex for the field and larger scales, which are most often under demand for SOM modelling. One possible parsimonious solution is an application of index of microbial physiological state (r), which describes the adaptive variation of the cell composition and metabolic activity by one variable (Panikov, 1995). This variable (r) can reflect the microbial response to the availability of carbon and nitrogen and shift of microbial biomass between active and dormant state (Blagodatsky and Richter, 1998), but also can be used for the description of the effect of external factors, such as temperature and moisture, on microbial activity. This approach is extremely useful for the description of priming effect (Blagodatsky et al., 2010) and the influence of substrate availability and external factors on the size and dynamics of priming. Distinguishing of these two types of driving forces for priming is crucial for modelling of SOM dynamics and steady-state stocks of different SOM pools. I will present the analysis of model response on combination of limiting factors presented as functions controlling the change of microbial physiological state and size of priming effect. Alternatively, the direct effect of the same factors on decomposition rate and priming will be investigated and compared with newly suggested approach.

Blagodatskaya E, Kuzyakov Y. 2013. Active microorganisms in soil: Critical review of estimation criteria and approaches. *Soil Biol. Biochem.* 67, 192-211.

Blagodatsky SA, Richter O. 1998. Microbial growth in soil and nitrogen turnover: A theoretical model considering the activity state of microorganisms. *Soil Biol. Biochem.* 30(13):1743-1755.

Blagodatsky S, Blagodatskaya E, Yuyukina T and Kuzyakov Y. 2010. Model of apparent and real priming effects: Linking microbial activity with soil organic matter decomposition. *Soil Biol. Biochem.* 42, 1275-1283.

Lawrence CR, Neff JC, Schimel JP. 2009. Does adding microbial mechanisms of decomposition improve soil organic matter models? A comparison of four models using data from a pulsed rewetting experiment. *Soil Biol. Biochem.* 41(9):1923-1934.

Panikov NS. 1995. *Microbial Growth Kinetics*. London, Glasgow: Chapman and Hall.

Resat H, Bailey V, McCue LA, Konopka A. 2012. Modeling Microbial Dynamics in Heterogeneous Environments: Growth on Soil Carbon Sources. *Microbial Ecology* 63(4):883-897