Geophysical Research Abstracts Vol. 17, EGU2015-15376, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License.

Progress in quantifying rates and product ratios of microbial denitrification using stable isotope approaches

Reinhard Well, Caroline Buchen, Anette Giesemann, Dominika Lewicka-Szczebak, Lena Rohe, and Heinz Flessa Thünen-Institut, Agrarklimaschutz, Braunschweig, Germany

Although it is known since long that microbial denitrification plays a central role in N cycling in soils due to loss of nutrient N, emissions of N_2O and lowering of N leaching, few data at the field scale are available due to the difficulty in measurement. In recent years, stable isotope signatures of N_2O such as $\delta^{18}O$, average $\delta^{15}N$ ($\delta^{15}N^{bulk}$) and $\delta^{15}N$ site preference (SP = difference in $\delta^{15}N$ between the central and peripheral N positions of the asymmetric N_2O molecule) have been used to constrain the atmospheric N_2O budget and to characterize N_2O turnover processes including N_2O production and reduction by microbial denitrification. However, the use of this approach to study N_2O dynamics in soils requires knowledge of isotope fractionation factors for the various partial processes involved, e.g. N_2O production by nitrification or fungal/bacterial denitrification, and N_2O reduction by bacterial denitrification.

Here we present recent progress on the principles of isotope fractionation modeling to estimate N_2O reduction and on the role of microbial groups and their specific impact on isotope values. Moreover, we report and discuss approaches to determine isotope values of produced N_2O prior to its reduction as well as enrichment factors of N_2O reduction. Finally, a variety of results from lab and field studies will be shown were N_2O reduction estimates by isotope fractionation modeling are validated by independent measurements using ^{15}N tracing or He/O₂ incubations. Methodical improvements to increase sensitivity of the ^{15}N tracing approach will be briefly addressed.

We conclude that up to now SP of soil-emitted N_2O proved to be suitable to constrain the product ratio of denitrification if N_2O fluxes are dominated by bacterial denitrification. Although this approach is not yet precise enough for robust quantification of N_2 fluxes, improved precision can be obtained in future, if further progress in understanding the control of fractionation factors of production and reduction and identifying N_2O formation by processes other than bacterial denitrification is achieved.

References:

Rohe, L., Anderson, T.-H., Braker, G., Flessa, H., Giesemann, A., Lewicka-Szczebak, D, Wrage-Mönnig, N., Well, R. (2014) Dual isotope and isotopomer signatures of nitrous oxide from fungal denitrification - a pure culture study. Rapid communications in mass spectrometry, 28, 1893-1903.

Lewicka-Szczebak D, Well R, Köster JR, Fuß R, Senbayram M, Dittert K, Flessa H (2014) Experimental determinations of isotopic fractionation factors associated with N_2O production and reduction during denitrification in soils. Geochim Cosmochim Acta 134:55-73

Lewicka-Szczebak D, Well R, Bol R, Gregory AS, Matthews GP, Misselbrook TH, Whalley WR, Cardenas L M (2015) Isotope fractionation factors controlling isotopocule signatures of soil-emitted N₂O produced by denitrification processes of various rates. Rapid Comm Mass Spectrometry 29:269-282