

Kinetic quantification of vertical solid matter transfers in soils by a multi-tracers approach

Marianna Jagercikova (1), Sophiea Cornu (1), Didierb Bourl'es (2), Olivierc Evrard (3), V'erion Alainb (2), Christinec Hatt'e (3), Sophiec Ayrault (3), and Balesdent Jérômea (1)

(1) INRA, UR1119 G'éochimie des Sols et des Eaux, F-13100 Aix en Provence, France (marianna.jagercikova@aix.inra.fr; sophie.cornu@aix.inra.fr; jerome.balesdent@aix.inra.fr), (2) Aix-Marseille Univ., CEREGE, UMR CNRS 7330, BP80, 13545 Aix-en-Provence Cedex 4, France (bourles@cerege.fr, veron@cerege.fr), (3) Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), UMR8212 (CEA-CNRS-UVSQ), Domaine du CNRS, F-91198 Gif-sur-Yvette Cedex, France (olivier.evrard@lsce.ipsl.fr; christine.hatte@lsce.ipsl.fr; sophie.ayrault@lsce.ipsl.fr)

We will present a novel multi-tracers method - combining different isotopic systems (^{137}Cs , ^{210}Pb (xs), meteoric ^{10}Be , $^{206}/^{207}\text{Pb}$, $\delta^{13}\text{C}$, ^{14}C) with numerical modeling based on a non-linear diffusion-convection equation with depth dependent parameters - to quantify vertical transfer of solid matter in Luvisols, namely clay translocation and bioturbation. Our results show that as much as $91 \pm 9\%$ and $80 \pm 9\%$ of ^{137}Cs and ^{10}Be , respectively, are associated with the clay size fraction ($0\text{-}2 \mu\text{m}$) and provide therefore relevant tracers to investigate vertical transfer of solid matter in soils with $\text{pH} > 5$ and low organic carbon contents. Lead partitioning between different solid phases is more complex. Considering two spatial distributions of isotopes (macropores or soil matrix) depending on the contribution of a fraction inherited from the loess parent material to the soil concentration, we built up a multi-tracers modeling approach that simulates the experimental data with the common set of transfer parameters and allows us to quantify the relative contributions of vertical solid matter transfers to present-day $0\text{-}2 \mu\text{m}$ vertical distributions. Clay translocation is responsible for 9 to 66 % of clay accumulation in the Bt-horizon. The diffusion coefficients quantifying the rate of soil mixing by bioturbation yields values that are significantly higher than those estimated in previous ecological studies. Modeling the kinetics of solid matter transfer at various spatial and temporal scales should become a reference method in modern pedogenic and critical zone studies.