Avatar’ remarks on the carbon input threshold in the sloping croplands

Agata Novara (1), Luciano Gristina (1), Andrés García-Díaz (2), Riccardo Menghin (1), and Artemi Cerdà (3)
(1) Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Italy. agata.novara@unipa.it, luciano.gristina@unipa.it, (2) Departamento de Investigación Aplicada y Extensión Agraria. IMIDRA. Finca Experimental El Encín. Alcalá de Henares, Spain. andres.garcia.diaz@madrid.org, (3) Soil Erosion and Degradation Research Group, Department of Geography, University of Valencia, Valencia, Spain. artemio.cerda@uv.es / www.soilerosion.eu

The erosion processes have been recognized as a major treat to land degradation and to the sustainability of agriculture (Gulati and Rai, 2014; Cerdà, 2010). Soil erosion by water causes significant ecological damage; it decreases soil fertility, affecting hydrological properties and soil aggregate stability, nutrients and biological activity and reducing soil carbon. The agricultural land degradation by erosion is, moreover, exacerbated by inappropriate soil management techniques. It is the case of most of Mediterranean vineyards where in addition to environmental factors (high slope, rainfall with high intensity), soil management with continuous tillage and absence of plant cover accelerate erosion process (Novara et al., 2011; Ruiz-Colmenero et al., 2012, Bochet et al., 2010; Ries, 2010; Martín-Moreno et al., 2013). For this reason in the last decades have been developed an alternative soil management such as cover crop under vineyard in order to reduce erosion and improve soil organic carbon level by the increase of carbon input into the soil. The avatar wonder: The loss of Carbon by water under alternative soil management could exceed the total C loss under conventional soil management? Is there a C threshold devised for each terrestrial ecosystem? If C input under alternative management increase, soil will reach a saturation C level? The soil science avatar will show the scenario of a conceptual model applied in a Mediterranean sloping vineyard.

Acknowledgements
To the “Ministerio de Economía and Competitividad” of Spanish Government for finance the POSTFIRE project (CGL2013- 47862-C2-1-R). The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research.

References
Beatriz Lozano-García and Luis Parras-Alcántara 2014 V ARIATION IN SOIL ORGANIC CARBON AND NITROGEN STOCKS ALONG A TOPOSEQUENCE IN A TRADITIONAL MEDITERRANEAN OLIVE GROVE Land Degradation and development. 25, 297–304 | DOI: 10.1002/ldr.2284