Geophysical Research Abstracts Vol. 17, EGU2015-2706-1, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License.

Origin of Seismic Anisotropy in Oceanic Plates and Mantle

Thorsten Becker (1), Clinton Conrad (2), Andrew Schaeffer (3), and Sergei Lebedev (3)

(1) University of Southern California, Earth Sciences, Los Angeles, United States (twb@usc.edu), (2) University of Hawaii at Manoa, (3) DIAS, Dublin

Seismic anisotropy is strongest in Earth's thermo-mechanical boundary layers where anisotropy should be straightforward to relate to mantle flow. However, both frozen-in and active mantle convection scenarios have been invoked, and no simple, global relationships exist. We show that lattice preferred orientation (LPO) inferred from mantle flow computations, in fact, produces a plausible global background model for asthenospheric azimuthal anisotropy underneath oceanic lithosphere. The same is not true for absolute plate motion (APM) models, unless reference frames are adjusted. A \sim 200 km thick layer where the flow model LPO matches observations from tomography lies just below the \sim 1200C isotherm of a half-space cooling model, indicating strong temperature-dependence of the processes that control the development of azimuthal anisotropy. We infer that the depth extent of shear, and hence the thickness of a relatively strong oceanic lithosphere, can be mapped this way. Radial anisotropy does not appear to conform to this background model, and ocean-basin specific deviations from the half-space cooling pattern are found in all of the surface wave models we considered. We discuss an expanded, comprehensive analysis of anisotropy and how results pertain to boundary layer dynamics.