Geophysical Research Abstracts Vol. 17, EGU2015-2834-1, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License.

Impact of elevated CO_2 , water table, and temperature changes on CO_2 and CH_4 fluxes from arctic tundra soils

Donatella Zona (1), Katherine Haynes (1), Douglas Deutschman (2), Emma Bryant (1), Katherine McEwing (1), Scott Davidson (1), and Walter Oechel (1)

(1) Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom, (2) Department of Biology, San Diego State University, CA, USA

Large uncertainties still exist on the response of tundra C emissions to future climate due, in part, to the lack of understanding of the interactive effects of potentially controlling variables on C emissions from Arctic ecosystems. In this study we subjected 48 soil cores (without active vegetation) from dominant arctic wetland vegetation types, to a laboratory manipulation of elevated atmospheric CO2, elevated temperature, and altered water table, representing current and future conditions in the Arctic for two growing seasons. To our knowledge this experiment comprised the most extensively replicated manipulation of intact soil cores in the Arctic. The hydrological status of the soil was the most dominant control on both soil CO₂ and CH₄ emissions. Despite higher soil CO₂ emission occurring in the drier plots, substantial CO₂ respiration occurred under flooded conditions, suggesting significant anaerobic respirations in these arctic tundra ecosystems. Importantly, a critical control on soil CO2 and CH4 fluxes was the original vascular plant cover. The dissolved organic carbon (DOC) concentration was correlated with cumulative CH₄ emissions but not with cumulative CO₂ suggesting C quality influenced CH₄ production but not soil CO₂ emissions. An interactive effect between increased temperature and elevated CO₂ on soil CO₂ emissions suggested a potential shift of the soils microbial community towards more efficient soil organic matter degraders with warming and elevated CO₂. Methane emissions did not decrease over the course of the experiment, even with no input from vegetation. This result indicated that CH₄ emissions are not carbon limited in these C rich soils. Overall CH₄ emissions represented about 49% of the sum of total C (C-CO₂ + C-CH₄) emission in the wet treatments, and 15% in the dry treatments, representing a dominant component of the overall C balance from arctic soils.