

Soil water erosion on Mediterranean vineyards. A review based on published data

Massimo Prosdocimi (1), Artemi Cerdà (2), and Paolo Tarolli (1)

(1) Department of Land, Environment, Agriculture and Forestry, University of Padova, Italy,

massimo.prosdocimi@gmail.com; paolo.tarolli@unipd.it, (2) Soil Erosion and Degradation Research Group, Department of Geography, University of Valencia, Valencia, Spain. artemio.cerda@uv.es / www.soilerosion.eu,

Soil water erosion on cultivated lands is a severe threat to soil resources in the world (Leh et al., 2013; Zhao et al., 2013). In particular, Mediterranean areas deserve a particular attention because of their edaphic, topographic and climatic conditions. Among the cultivated lands, concerns have arisen about vineyards because, aside representing one of the most important crop in terms of income and employment, they also have proven to be the form of agricultural land that causes one of the highest soil losses (Tropeano et al., 1984; Leonard and Andrieux, 1998; Ferrero et al., 2005; Cerdà et al., 2007; Blavet et al., 2009; Casalí et al., 2009; Novara et al., 2011; Martínez Casasnovas et al., 2013; Ruiz Colmenero et al., 2013; Tarolli et al., 2014). Although the topic of soil water erosion on vineyards has been studied, it still raises uncertainties. These are due to the i) high complexity of processes involved, ii) different methodologies used to analyze them and iii) analyses carried out at different spatial and temporal scales. At this regard, this work aims to evaluate the impact of factors controlling erosion such as rainfall characteristics, topography, soil properties and soil and water conservation techniques. Data derived from experimental plots have been reviewed. At first, what emerges is the difficulty of comparing erosion rates obtained with different methodologies and at different spatial scales. Secondly, all the factors demonstrate to have a strong impact on soil erosion but a 'general rule' upon which to consider one factor always predominant over the others does not come out. Therefore, this work supports the importance of monitoring soil water erosion by field measurements to better understand the relationship between the factors. Variables like rainfall characteristics, topography and soil properties are much more difficult to modify than the soil and water management techniques. Hence, future researches are needed to both recommend the best soil and water management techniques to the farmers and implement soil erosion mitigation policies at appropriate spatial scales.

Acknowledgements

The RECAR-E project is funded by the European Commission FP7 program, ENV.2013.6.2-4 "Sustainable land care in Europe".

References

Blavet, D., De Noni, G., Le Bissonnais, Y., Leonard, M., Maillo, L., Laurent, J.Y., Asseline, J., Leprun, J. C., Arshad, M. A., Roose, E.: Effect of land use and management on the early stages of soil water erosion in French Mediterranean vineyards, *Soil & Tillage Research*, 106, 124-136, 2009.

Brenot, J., Quiquerez, A., Petit, C., Garcia, J.-P., Davy, P.: Soil erosion rates in Burgundian vineyards, *Bulletino della Società Geologica Italiana*, Volume Speciale 6, 169–174, 2006.

Casalí, J., Giménez, R., De Santisteban, L., Alvarez-Mozos, J., Mena, J., Del Valle de Lersundi, J.: Determination of long-term erosion rates in vineyards of Navarre (Spain) using botanical benchmarks, *Catena*, 78, 12-19, doi:10.1016/j.catena.2009.02.015, 2009.

Cerdà, A., Doerr, S. H.: Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils, *Hydrological Processes*, 21, 2325–2336, doi: 10.1016/j.catena.2008.03.010, 2007.

Ferrero, A., Usowicz, B., Lipiec, J.: Effects of tractor traffic on spatial variability of soil strength and water content in grass covered and cultivated sloping vineyard, *Soil & Tillage Research*, 84, 127-138, 2005.

Leh, M., Bajwa, S., Chaubey, I.: Impact of land use change on erosion risk: an integrated remote sensing geographic information system and modeling methodology, *Land Degradation & Development*, 24, 409- 421, doi 10.1002/ldr.1137, 2013.

Leonard, J., Andrieux, P.: Infiltration characteristics of soils in Mediterranean vineyards in southern France, *Catena*, 32, 209–223, 1998.

Martínez-Casasnovas, J. A., Ramos, M. C., Benites, G.: Soil and water assessment tool soil loss simulation at

the sub-basin scale in the Alt Penedès-Anoia vineyard region (NE Spain) in the 2000s, *Land Degradation & Development*, doi: 10.1002/ldr.2240, 2013.

Novara, A., Gristina, L., Saladino, S. S., Santoro, A., Cerdà, A.: Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard, *Soil & Tillage Research*, 117, 140-147, 2011.

Ruiz-Colmenero, M., Bienes, R., Eldridge, D. J., Marques, M. J.: Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain, *Catena*, 104, 153-160, doi:10.1016/j.catena.2012.11.007, 2013.

Tarolli, P., Sofia, G., Calligaro, S., Prosdocimi, M., Preti, F., Dalla Fontana, G.: Vineyards in terraced landscapes: new opportunities from lidar data, *Land Degradation & Development*, doi:10.1002/ldr.2311, 2014.

Tropeano, D.: Rate of soil erosion processes on vineyards in central Piedmont (NW Italy), *Earth Surf. Process. Landf.*, 9, 253– 266, 1984.

Zhao, G., Mu, X., Wen, Z., Wang, F., Gao, P.: Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China, *Land Degradation & Development*, 24, 499- 510, doi 10.1002/ldr.2246, 2013.