

Detection of CO₂ leakage by the surface-soil CO₂-concentration monitoring (SCM) system in a small scale CO₂ release test

Gitak Chae (1), Soonyoung Yu (2), Ki-Sung Sung (1), Byoung-Young Choi (1), Jinyoung Park (1), Raehee Han (1), Jeong-Chan Kim (1), and Kwon Gyu Park (1)

(1) CO₂ sequestration research team, Korean Institute of Geoscience and Mineral Resources, Daejeon, 305-350, Korea (gtchae@kigam.re.kr), (2) Research Institute for Social Criticality, Pusan National University, Busan, 609-735, Korea (s7yu.iamysy@gmail.com)

Monitoring of CO_2 release through the ground surface is essential to testify the safety of CO_2 storage projects. We conducted a feasibility study of the multi-channel surface-soil CO₂-concentration monitoring (SCM) system as a soil CO_2 monitoring tool with a small scale injection. In the system, chambers are attached onto the ground surface, and NDIR sensors installed in each chamber detect CO_2 in soil gas released through the soil surface. Before injection, the background CO₂ concentrations were measured. They showed the distinct diurnal variation, and were positively related with relative humidity, but negatively with temperature. The negative relation of CO_2 measurements with temperature and the low CO₂ concentrations during the day imply that CO₂ depends on respiration. The daily variation of CO_2 concentrations was damped with precipitation, which can be explained by dissolution of CO₂ and gas release out of pores through the ground surface with recharge. For the injection test, 4.2 kg of CO₂ was injected 1 m below the ground for about 30 minutes. In result, CO₂ concentrations increased in all five chambers, which were located less than 2.5 m of distance from an injection point. The Chamber 1, which is closest to the injection point, showed the largest increase of CO_2 concentrations; while Chamber 2, 3, and 4 showed the peak which is 2 times higher than the average of background CO_2 . The CO_2 concentrations increased back after decreasing from the peak around 4 hours after the injection ended in Chamber 2, 4, and 5, which indicated that CO₂ concentrations seem to be recovered to the background around 4 hours after the injection ended. To determine the leakage, the data in Chamber 2 and 5, which had low increase rates in the CO_2 injection test, were used for statistical analysis. The result shows that the coefficient of variation (CV) of CO₂ measurements for 30 minutes is efficient to determine a leakage signal, with reflecting the abnormal change in CO₂ concentrations. The CV of CO₂ measurements for 30 minutes exceeded 5% about 5 minutes before the maximum CO₂ concentration was detected. The contributions of this work are as follows: (1) SCM is an efficient monitoring tool to detect the CO_2 release through the ground surface. (2) The statistical analysis method to determine the leakage and a monitoring frequency are provided, with analyzing background concentrations and CO₂ increases in a small-scale injection test. (3) The 5% CV of CO_2 measurements for 30 minutes can be used for the early warning in CO_2 storage sites.