Measuring 36Ar without 35Cl interference

John Saxton
Nu Instruments Ltd, Wrexham, LL13 9XS, United Kingdom (john.saxton@nu-ins.com)

Noble gas measurements are usually made in static mode, when the mass spectrometer sensitivity is inversely proportional to volume: this makes the building of very large instruments to obtain high mass resolution impracticable. A particularly challenging interference has hitherto been 35Cl, which differs in mass from 36Ar by 1 part in 3937. We have developed a method which makes improved use of the available MRP to remove interferences, and used it to obtain HCl-free 36Ar measurements on a multicollector instrument with MRP of only \sim6000 (MRP= mass resolving power = m/dm 5-95% on side of peak).

By arranging that the target mass position on a minor isotope (e.g. 36Ar), from which the interference must be removed, coincides with the \sim50% point on the side of a major isotope (e.g. 40Ar), it is possible both to set the mass accurately and to verify the mass position and stability during measurements. The peak top of 40Ar is measured in a separate mass step. Two small corrections are necessary. One compensates for the residual HCl tail at the 36Ar position. The other arises because the peak is not totally flat in the region of interest: 40Ar and 36Ar+HCl are measured on the peak top, whilst 36Ar is measured at the extreme edge, with slightly lower efficiency. The required correction parameters can be obtained from a series of air calibrations with different target/interference ratios. With samples containing 4×10^{-15} to 3×10^{-14} moles of 40Ar, 36Ar/40Ar was measured, without HCl interference, to a 1σ precision of 0.5%, only slightly worse than counting statistics. This is potentially useful for 40Ar/39Ar dating, where 36Ar is used to correct for trapped air, and may be particularly significant for smaller or younger samples.