Geophysical Research Abstracts Vol. 17, EGU2015-4853, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License.

Measuring ³⁶Ar without H³⁵Cl interference

John Saxton

Nu Instruments Ltd, Wrexham, LL13 9XS, United Kingdom (john.saxton@nu-ins.com)

Noble gas measurements are usually made in static mode, when the mass spectrometer sensitivity is inversely proportional to volume: this makes the building of very large instruments to obtain high mass resolution impracticable. A particularly challenging interference has hitherto been $H^{35}Cl$, which differs in mass from ³⁶Ar by 1 part in 3937. We have developed a method which makes improved use of the available MRP to remove interferences, and used it to obtain HCl-free ³⁶Ar measurements on a multicollector instrument with MRP of only ~6000 (MRP= mass resolving power = m/dm 5-95% on side of peak).

By arranging that the target mass position on a minor isotope (e.g. 36 Ar), from which the interference must be removed, coincides with the ~50% point on the side of a major isotope (e.g. 40 Ar), it is possible both to set the mass accurately and to verify the mass position and stability during measurements. The peak top of 40 Ar is measured in a separate mass step. Two small corrections are necessary. One compensates for the residual HCl tail at the 36 Ar position. The other arises because the peak is not totally flat in the region of interest: 40 Ar and 36 Ar+HCl are measured on the peak top, whilst 36 Ar is measured at the extreme edge, with slightly lower efficiency. The required correction parameters can be obtained from a series of air calibrations with different target/interference ratios. With samples containing $4x10^{-15}$ to $3x10^{-14}$ moles of 40 Ar, 36 Ar/ 40 Ar was measured, without HCl interference, to a 1σ precision of 0.5%, only slightly worse than counting statistics. This is potentially useful for 40 Ar/ 39 Ar dating, where 36 Ar is used to correct for trapped air, and may be particularly significant for smaller or younger samples.