

Carbon fluxes change and major carbon sources after palsas thawed into pond

Zheng Wang, Nigel Roulet, and Tim Moore

1Department of Geography, and Global Environmental and Climate Change Centre, McGill University, Montreal, Canada
(wzhwangzheng@gmail.com)

Permafrost thaw is pronounced across discontinuous permafrost peatland region with the ongoing climate change. My research is assessing carbon (C) fluxes change after permafrost mounds (palsas) thawed into ponds, and the major C source for the thawed pond C fluxes. In spite of shallow water depths (about 3m), the thawed ponds are strongly stratified with a thick anoxic hypolimnion from 1 m to the pond bottoms. The CO₂ flux and most CH₄ fluxes from the ponds were positive – i.e. to the atmosphere, while palsas sequestered CO₂ and CH₄ for most of the growing season. The average seasonal loss after palsas thawed into pond is 9.46 mmol CO₂ m⁻² h⁻¹ for CO₂, and 1.69 to 2.00 μ mol m⁻² day⁻¹ for CH₄. Over season, the middle sized pond had significantly higher CO₂ effluxes, while the smallest pond had significantly higher CH₄ effluxes. Bubble emission accounted a large part of pond CH₄ emission, with the highest ebullition observed at the pond edges. The diffusion bags showed dissolved CO₂ and CH₄ concentrations increased hundreds times from 10 to 50 to 230cm along pond profile, and followed δ 13C measures demonstrated there was a CH₄ production shift from high acetoclastic methanogenesis to high CO₂ reduction. DOC effect factor which both considered the effects of DOC mass and biodegradability (SUVA/FI) had a very high co-relationship with pond C gas effluxes, which indicated surface pond water DOC may have the main liable C source to support pond C gas effluxes. Based on δ 13C in surface dissolved CO₂ and CH₄, DOC, peat, sediment and plant roots (the same δ 13C of liable DOC), we used isotopic mixed model to quantified show that plant new produced liable DOC was the major C source for dissolved C fluxes in thawed pond. Therefore, Palsas thawed into ponds lead to large amounts of CO₂ and CH₄ emissions, and new produced labile DOC from surrounding plants mainly supported thawed pond C effluxes rather than old sediment.