

Rising atmospheric CO₂ decreases the rate of deep soil water use in a water-limited mature woodland

Teresa E. Gimeno (1), Anthony P. O'Grady (2), Tim R. McVicar (3), David T. Tissue (4), Remko A. Duursma (4), and David S. Ellsworth (4)

(1) INRA, UMR 1391, France (teresa.gimeno@bordeaux.inra.fr), (2) CSIRO Land and Water Flagship, Private Bag 12, Hobart, Tasmania 7001, Australia, (3) CSIRO Land and Water Flagship, Christian Laboratory, Clunies Ross Street, Black Mountain ACT 2601, Australia, (4) Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia

Elevated atmospheric [CO₂] (eCa) may affect ecosystem water use. Elevated Ca reduces leaf-level transpiration (Es) in trees via reduced plant stomatal conductance (gs) and also enhances photosynthesis and productivity. Subsequently, it is hypothesized that eCa increases vegetation water use efficiency, reduces ecosystem water use and increases soil water content (θ_s) and ground water recharge. However, enhanced productivity in eCa could increase leaf area index (L), offsetting net vegetation water savings despite reduced water use per unit leaf area, as well as increasing canopy interception (I). Alternatively, in water-limited ecosystems, increased soil water from reduced Es would be lost via forest floor evapotranspiration (Ef_{floor}). Here, we tested for the effects of eCa on the partitioning of the hydrological components in a mature Eucalyptus woodland exposed to Free Air CO₂ Enrichment (the 'EucFACE' experiment). EucFACE is the first native forest eCa experiment and it is established in a seasonally water-limited climate. We hypothesized that in the short term (< 1 year), eCa would reduce canopy Es per unit of leaf area, while L would remain unaffected, leading to increased θ_s . Alternatively, in the longer term (> 1 year) increased L would offset reduced Es under eCa. Over two years, we measured shallow (30 cm) θ_s with 48 time domain reflectometers (TDR) and deep (up to 450 cm) θ_s on 15 locations with a neutron probe, we estimated Es from measurement of sapflow velocity (Js) on 24 trees, and calculated L and Ef_{floor} from measurements of the understory radiative environment, soil temperature and θ_s . Under eCa, gs decreased to some extent during certain periods. We found that shallow soil θ_s was not significantly affected by eCa, whereas deep (300-450 cm) θ_s decreased more rapidly under ambient Ca than under eCa, which could imply that deep-rooted vegetation (trees) underlie this trend. We found that Js under eCa was lower only while the ecosystem was energy-limited, but we did not find a significant effect of eCa on total Esap. Finally, to date, eCa did not significantly affect L or I, thus leaf-scale effects were not offset at the canopy level. These results suggest that in the longer term, under sustained periods of water scarcity ('el Niño' conditions for eastern Australia), rising atmospheric CO₂ could significantly affect deep soil water storage and eventually ground water recharge in water-limited Eucalyptus woodlands.