

Environmental Challenges Related to the Acquisition of the Trans Carpathian Wide Angle Reflection and Refraction Line

Dorina-Alina Dragut (1), Gehrig Schultz (2), Victor Mocanu (3), Randell Stephenson (4), Tomasz Janik (5), and Vitaly Starostenko (6)

(1) Faculty of Geology and Geophysics, University of Bucharest, Bucharest, Romania (alina_dragut_28@yahoo.com), (2) S.C. Prospectiuni S.A., Bucharest, Romania (gehrig.schultz@prospectiuni.com), (3) Faculty of Geology and Geophysics, University of Bucharest, Bucharest, Romania (vi_mo@yahoo.com), (4) School of Geosciences, University of Aberdeen, Aberdeen, United Kingdom (r.stephenson@abdn.ac.uk), (5) Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland (janik@igf.edu.pl), (6) Institute of Geophysics, National Academy of Sciences of Ukraine, Kiev, Ukraine (vstar@igph.kiev.ua)

Complex structures like the Carpathian Orogen and its neighbouring platforms and related inter-orogenic basin system can be understood only by complex integration of complementary investigative tools. Most of regional geoscientific investigations in Romania have targeted the very intricate, high intermediate-depth seismicity, clustered Carpathian Bend Zone: Vrancea. Despite huge geological and geophysical efforts, the area remains a matter of robust debate, at least from the point of view of geodynamic driving mechanisms. However, other areas outside Vrancea remained somehow “orphaned”.

However, a large wide angle refraction and reflection (WARR) survey was carried out in the summer of 2014 by a large international partnership in order to study the transition from the East European Platform to the northern part of the Romanian Eastern Carpathians, Transylvanian Basin and the Apuseni Mountains.

The main scientific objectives of the WARR project relate to three main investigation domains: crustal architecture; affinity of crystalline basement and sedimentary basins architecture. The profile is about 700 km in total, in Ukraine and Romania. Recorders were placed at 1.75 – 2.0 km intervals along an alignment forming the Romanian segment. Recorders used were stand-alone DSS Cubes from the Helmholtz Center of GFZ Potsdam and from the Institute of Geophysics of the Polish Academy of Sciences. The seismic sources were explosives (“Riogel” and “Riodet” by Maxam), with shotpoints spaced at 20 – 65 km with a total of 800 – 1200 kg explosives/site in clusters of drill-holes loaded with 50 kg explosive/hole, average depth of 25 m.

Very complicated and legally-challenging environmental permitting requirements represented a real issue for successful implementation of the project. The main concern of local and central authorities related to potential pollution of sensitive components. Here, we present the strategy, actions and results concluded in order to reach the scientific and technological targets while managing to obey all legal rules and regulations imposed by the decision makers. We finally demonstrate that there is no danger for the environment by this classic form of seismic wave generation if all restrictions, health and safety rules are strictly complied with and are continuously monitored.

This project could not be carried out successfully without significant support from: Mark Sturgess and Mark Wigley of Hunt Oil of Romania; Alex Stefan and Radita Bandrabur of Prospectiuni; Vasile Ionel Catana and Albert Ion Ranete of Maxam Romania; Alissa Ionescu of Lukoil Romania; Gheorghe Dutu, Claudia Raileanu and Elena Caramalau of the National Agency of Mineral Resources of Romania; Laszlo Klarick of the Romanian Senate.

This work has been supported from the strategic grant POSDRU/159/1.5/S/133391, Project “Doctoral and Post-doctoral programs of excellence for highly qualified human resources training for research in the field of Life sciences, Environment and Earth Science” cofinanced by the European Social Fund within the Sectorial Operational Program Human Resources Development 2007 – 2013.