Geophysical Research Abstracts Vol. 17, EGU2015-6407, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License.

Effects of cold electron number density variation on whistler-mode wave growth

Rongxin Tang (1,2), Danny Summers (2), Xiaohua Deng (1), and Yun He (1)

(1) Nanchang University, Institute of Space Science and Technology, Nanchang, China (tangrx@gmail.com), (2) Dept of Math & Stats, Memorial University of Newfoundland, St. John's, Canada

We examine how the growth of magnetospheric whistler-mode waves depends on the cold (background) electron number density N_0 . The analysis is carried out by varying the cold-plasma parameter $a = (\text{electron gyrofrequency})^2/((\text{electron plasma frequency})^2)^2$ which is proportional to $1/N_0$. For given values of the thermal anisotropy A_T and the ratio N_h/N_0 , where N_h is the hot (energetic) electron number density, we find that, as N_0 decreases, the maximum values of the linear and nonlinear growth rates decrease and the threshold wave amplitude for nonlinear growth increases. Generally, as N_0 decreases, the region of $(N_h/N_0, A_T)$ -parameter space in which nonlinear wave growth can occur becomes more limited, i.e., as N_0 decreases, the parameter region permitting nonlinear wave growth shifts to the top-right of $(N_h/N_0, A_T)$ -space characterized by larger N_h/N_0 -values and larger A_T -values. The results have implications for choosing input parameters for full-scale particle simulations and also in the analysis of whistler-mode chorus data.