
Geophysical Research Abstracts
Vol. 17, EGU2015-6469, 2015
EGU General Assembly 2015
© Author(s) 2015. CC Attribution 3.0 License.

Implementing the PM Programming Language using MPI and OpenMP –
a New Tool for Programming Geophysical Models on Parallel Systems
Tim Bellerby
University of Hull, Geography Environment and Earth Sciences, Geography Environment and Earth Sciences, Hull, United
Kingdom (t.j.bellerby@hull.ac.uk)

PM (Parallel Models) is a new parallel programming language specifically designed for writing environmental
and geophysical models. The language is intended to enable implementers to concentrate on the science behind
the model rather than the details of running on parallel hardware. At the same time PM leaves the programmer
in control – all parallelisation is explicit and the parallel structure of any given program may be deduced directly
from the code.

This paper describes a PM implementation based on the Message Passing Interface (MPI) and Open Multi-
Processing (OpenMP) standards, looking at issues involved with translating the PM parallelisation model to
MPI/OpenMP protocols and considering performance in terms of the competing factors of finer-grained parallelisa-
tion and increased communication overhead. In order to maximise portability, the implementation stays within the
MPI 1.3 standard as much as possible, with MPI-2 MPI-IO file handling the only significant exception. Moreover,
it does not assume a thread-safe implementation of MPI.

PM adopts a two-tier abstract representation of parallel hardware. A PM processor is a conceptual unit capa-
ble of efficiently executing a set of language tasks, with a complete parallel system consisting of an abstract
N-dimensional array of such processors. PM processors may map to single cores executing tasks using cooperative
multi-tasking, to multiple cores or even to separate processing nodes, efficiently sharing tasks using algorithms
such as work stealing. While tasks may move between hardware elements within a PM processor, they may not
move between processors without specific programmer intervention. Tasks are assigned to processors using a
nested parallelism approach, building on ideas from Reyes et al. (2009). The main program owns all available
processors. When the program enters a parallel statement then either processors are divided out among the newly
generated tasks (number of new tasks < number of processors) or tasks are divided out among the available proces-
sors (number of tasks > number of processors). Nested parallel statements may further subdivide the processor set
owned by a given task. Tasks or processors are distributed evenly by default, but uneven distributions are possible
under programmer control. It is also possible to explicitly enable child tasks to migrate within the processor set
owned by their parent task, reducing load unbalancing at the potential cost of increased inter-processor message
traffic.

PM incorporates some programming structures from the earlier MIST language presented at a previous EGU
General Assembly, while adopting a significantly different underlying parallelisation model and type system. PM
code is available at www.pm-lang.org under an unrestrictive MIT license.

Reference

Ruymán Reyes, Antonio J. Dorta, Francisco Almeida, Francisco de Sande, 2009. Automatic Hybrid MPI+OpenMP
Code Generation with llc, Recent Advances in Parallel Virtual Machine and Message Passing Interface, Lecture
Notes in Computer Science Volume 5759, 185-195


