Geophysical Research Abstracts Vol. 17, EGU2015-6478-1, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License.

Rain- vapour isotopic interaction over the south-west coast of India

Lekshmy Palliyil Ravisankar, Midhun Madhavan, and Ramesh Rengaswamy Physical Research Laboratory, Geosciences, Ahmedabad, India (lekshmy@prl.res.in)

Boundary layer water vapor isotopic composition (δ_n) is an important factor that controls the isotopic composition of evaporation flux and modulating the $\delta^{18}O$ of tree ring cellulose through plant physiological cycle. But due to the difficult sampling procedure for water vapor, δ_v has rarely been quantified. Since many simple isotopic models require δ_v as an input, mostly we assume that the water vapor is in isotopic equilibrium with δ of monthly rain (δ_r) . Here we present simultaneous observations of water vapour (~ 300 samples) and rainfall (~ 200 samples) isotopic ratios from two stations in the south-west coast of India (both the stations are located in the west of Western Ghats), sampled during April- October, 2012. Daily rain water and water vapour (cryogenic trapping method) were collected according to the IAEA protocol and the isotopic analyses (D and ¹⁸O) were done using a Thermo Fisher Delta V⁺ Isotope Ratio Mass Spectrometer. We observe that, water vapour and rain are close to the equilibrium values during pre monsoon (April-May, $\varepsilon = \delta_r - \delta_v = 8.9 \pm 1.4 \%$,), summer monsoon (June-September, $\varepsilon = 9.0$ \pm 1.8 %) and North- East (NE) monsoon (October, ε = 7.9 \pm 2.9 %) seasons. However, some individual rain events show more deviations from the equilibrium values. NE monsoon rainfall and water vapour are isotopically more depleted in ¹⁸O compared to the pre monsoon and summer monsoon seasons, in which the depletion is more in rain (\sim 4 %) compared to water vapour (\sim 2 %). This is because of the ¹⁸O enrichment of ground level vapour due to local evapo- transpiration (stations are at the leeward side of the Ghats), while rainfall is directly formed from the NE monsoon clouds which is more depleted in ¹⁸O. These results will be useful for the interpretation of δ^{18} O of tree rings from south west.