

Spontaneous, large stick-slip events in rotary-shear experiments as analogous to earthquake rupture

Ximeng Zu and Zeev Reches

University of Oklahoma, Geology and Geophysics, Norman, United States (reches@ou.edu)

Experimental stick-slip events are commonly envisioned as laboratory analogues of the spontaneous faults that slip during natural earthquakes (Brace & Byerlee, 1966). However, typical experimental stick-slip events are tiny events of slip distances up to a few tens of microns. To close the gap between such events and natural earthquakes, we develop a new method that produces spontaneous stick-slip events with large displacements on our rotary shear apparatus (Reches & Lockner, 2010). In this method, the controlling program continuously calculates the real-time power-density (PD = slip-velocity times shear stress) of the experimental fault. Then, a feedback loop modifies the slip-velocity to match the real-time PD with the requested PD. In this method, the stick-slip events occur spontaneously while slip velocity and duration are not controlled by the operator.

We present a series of tens stick-slip events along granite and diorite experimental faults with 0.0001-1.3 m of total slip and slip-velocity up to 0.45 m/s. Depending on the magnitude of the requested PD, we recognized three types of events: (1) Stick-slip events with a nucleation slip that initiates \sim 0.1 sec before the main slip which is characterized by temporal increase of shear stress, normal stress, and fault dilation; (2) Events resembling slip-pulse behavior of abrupt acceleration and intense dynamic weakening and subsequent strength recovery; and (3) Small, creep events during quasi-continuous, low-velocity slip with tiny changes of stress and dilation. The energy-displacement catalog of types (1) and (2) events shows good agreement with previous slip-pulse experiments and natural earthquakes (Chang et al., 2012). The present experiments indicate that power-density control is a promising experimental approach for earthquake simulations.