Geophysical Research Abstracts Vol. 17, EGU2015-7923, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License.

Evaluation of NO_x emission fluxes over East Asia using model-predicted and OMI-retrieved tropospheric NO_2 columns

Kyung M. Han, Sojin Lee, and Chul H. Song

GIST (Gwangju Institute of Science and Technology), School of Environmental Science and Engineering, Gwangju, Korea, Republic Of (kman.han@gmail.com)

To evaluate bottom-up NO_x emission fluxes of INTEX-B, CAPSS, and REAS v1.11 inventories, CMAQ-simulated tropospheric NO_2 columns were compared with OMI-retrieved tropospheric NO_2 columns. For the direct comparison between the two columns, the averaging kernels retrieved from the KNMI algorithm were applied to the CMAQ model results. In the study, the two tropospheric NO_2 columns showed good spatial and seasonal correlation with correlation coefficients ranging from 0.71 to 0.96. In terms of the normalized mean error, the CMAQ-simulated NO_2 columns were, on annual average, \sim 28% smaller than the OMI-retrieved NO_2 columns, indicating the NO_x emission fluxes were possibly underestimated in East Asia. In addition, large absolute differences between the two tropospheric NO_2 columns found over Central East China during winter were investigated and analyzed with several sensitivity runs (monthly variations in NO_x emissions; different NO_x emission fluxes; and reaction probability of N_2O_5 onto aerosols).