Geophysical Research Abstracts Vol. 17, EGU2015-8646-3, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License.

Inter-relationship between scaling exponents for describing self-similar river networks

Soohyun Yang and Kyungrock Paik

School of Civil, Environmental, and Architectural Engineering, Korea University

Natural river networks show well-known self-similar characteristics. Such characteristics are represented by various power-law relationships, e.g., between upstream length and drainage area (exponent h) (Hack, 1957), and in the exceedance probability distribution of upstream area (exponent ε) (Rodriguez-Iturbe et al., 1992). It is empirically revealed that these power-law exponents are within narrow ranges. Power-law is also found in the relationship between drainage density (the total stream length divided by the total basin area) and specified source area (the minimum drainage area to form a stream head) (exponent η) (Houssa and Houssa).

Considering that above three scaling relationships all refer to fundamental measures of 'length' and 'area' of a given drainage basin, it is natural to hypothesize plausible inter-relationship between these three scaling exponents. Indeed, *Rigon et al.* (1996) demonstrated the relationship between ε and h. In this study, we expand this to a more general ε - η -h relationship. We approach ε - η relationship in an analytical manner while η -h relationship is demonstrated for six study basins in Korea. Detailed analysis and implications will be presented.

References

Hack, J. T. (1957). Studies of longitudinal river profiles in Virginia and Maryland. US, Geological Survey Professional Paper, 294.

Moussa, R., & Bocquillon, C. (1996). Fractal analyses of tree-like channel networks from digital elevation model data. *Journal of Hydrology*, 187(1), 157-172.

Rigon, R., Rodriguez-Iturbe, I., Maritan, A., Giacometti. A., Tarboton, D. G., & Rinaldo, A. (1996). On Hack's Law. *Water Resources Research*, 32(11), 3367-3374.

Rodríguez-Iturbe, I., Ijjasz-Vasquez, E. J., Bras, R. L., & Tarboton, D. G. (1992). Power law distributions of discharge mass and energy in river basins. *Water Resources Research*, 28(4), 1089-1093.