

Effect of Ti or Sn doping on the catalytic performance of MnO_x/CeO₂ catalyst for low temperature selective catalytic reduction of NO with NH₃

Yan Xiong, Changjin Tang, and Lin Dong
Nanjing University, Nanjing, China (81066335@qq.com)

Yan Xiong, Changjin Tang, Lin Dong*
a Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China

Abstract Text

The abatement of nitrogen oxides (NO_x) emission from exhaust gases of diesel and stationary sources is a significant challenge for economic and social development. Ceria-based solid solutions were synthesized and used as supports to prepare MnO_x/Ce0.8Ti0.2O₂ and MnO_x/Ce0.8Sn0.2O₂ catalysts (Mn/CeTi and Mn/CeSn) for low temperature selective catalytic reduction of NO by NH₃ (NH₃-SCR). The effects of Ti or Sn doping on the catalytic performance of MnO_x/CeO₂ catalyst were investigated. Experimental results show that doping of Ti or Sn increases the NO removal efficiency of MnO_x/CeO₂. The NO conversion of Mn/CeTi catalyst is more than 90 % at temperature window of 175 ~ 300 °C under a gas hour space velocity of 60,000 mL•g⁻¹•h⁻¹. Modified catalysts are also found to exhibit greatly improved resistance to sulfur-poisoning. NH₃-TPD results suggest that NH₃ desorption on the catalysts is observed over a wide temperature range, due to the variability of adsorbed NH₃ species with different thermal stabilities. Doping of Ti and Sn into Mn/CeO₂ greatly increased the NH₃ adsorption ability of the composites which could promote the SCR reaction. Characterization results also indicate that doping of Ti or Sn brings about catalysts with higher BET surface area, enhanced oxygen storage capacity and increased surface acidity. X-ray photoelectron spectroscopy (XPS) analysis of spent catalysts following SCR reaction in the presence of SO₂ verify that the loss of surface Mn species was inhibited by doping of Ti, which contributes to extend the catalyst durability.