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INPUTS

To improve our ability to rapidly assess and map shoreline-angles at a regional and local scale we have developed TerraceM, a MATLAB® tool that allows estimating
the shoreline angle and its associated error using high-resolution topography. For convenience, TerraceM includes a graphical user interface (GUI) that displays the
topography and online Google Maps® imagery. The analysis follows a workflow that consists of 8 steps:
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Testing TerraceM at Santa Cruz, California
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-There are diverse methods to estimate marine terrace elevation,
however some of them are not appropiate  to obtain reliable 
uplift rate estimations when comparing with high-stands [4, 8 ,9].

-The Shoreline-Angle is the geomorphic marker that better 
represent  a past sea-level position and can be correlated 
directly with sea-level  high-stands [8]

-The Shoreline-angle is an imaginary point difficult to asses, 
erosion and difussion can mask it position.

-TerraceM explore different methodologies to remove  erosional 
or depositional disturbances that mask the  shoreline-angle 
location.

Swath profiles are generated through
rectangular profiles.

The cells enclosed whithin the profiles are 
projected and classified in bins. Then, mean,
minimum and maximum elevations are 
calculated for each bin.
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Marine terraces are ephemeral planar landforms generated by the effects
of sea-level variations and tectonic uplift.

Marine terrace formation occurs during high-stands due sea-level rise and
cliff retreat (A).

During low-stands terraces are eroded by river incision (D) or covered by 
sediments transported along the beach (B, E) or by cliff diffussion (C).

Swath profiles display interface.

We tested TerraceM using different DEM resolutions (LiDAR, NED and 
Aster GDEM). We found that precision and accuracy increases as raster
resolution decreases.
The high positive residuals of the inner edges indicate that this marker
overestimate terrace elevation in comparison with the shoreline-angles, 
likewise the high dispersion shows that the inner edge is characterized 
by high dispersion and low accuracy in comparison with the shoreline-
angle estimated by TerraceM
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TerraceM include four functions that use different methods to 
determine the shoreline-angle in several geomorphic scenarios. 

The profiles are analyzed through the shoreline-angle
mapping interface using linear interpolations on PPZ and PCZ. 

Paleo-platform zone Pale
o-c

liff 
zo

ne

Shoreline-angle mapping interface

Filtering interface: 
Scattered shoreline-angles  are interpolated and filtered 
through  this routine.

Point projection:
This routine is used to detect terrace warping by studying 
shoreline-angles projected along a profile.
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Export tools:
Shoreline-angles are saved inside a .txt file and can be
exported in .shp or .kml formats
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Repeatability of 
measurements
The methodological approach of
TerraceM is relatively simple, however 
difficulties in estimating the paleo-cliff 
and the paleo-platform may complicate 
this procedure and the repeatability of
measurements.

To test repeatability, we developed an 
experiment performed by 10 students
measuring shoreline-angles on four 
topographic profiles during ~20 min.
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The bin size of lineal interpolations and the range for 
outliers removal can be adjusted by the user.

Analysis of marine terraces at Santa Cruz, California, characterized by flights of marine terraces uplifted by several 
earthquakes along the San Andreas Fault [3].  We mapped shoreline-angles using TerraceM and 2 m LiDAR topography
(OpenTopography and NOAA) along the Highway terrace, the lowest one in the area. 

We  compared TerraceM results with previous surveys [1] [2] [5], estimating the
accuracy and precision of TerraceM measurements through their residuals. 
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