1. Introduction

The European Centre for Medium-Range Weather Forecasts (ECMWF) issues global forecasts consisting of a 50 member ensemble, a high-resolution, and a control run. Such ensemble forecast systems tend to be biased and underdispersive for surface weather variables (Bougeault et al., 2010; Park et al. 2010). Bias and underdispersion can be reduced by different statistical post-processing methods, of which ensemble model output statistics (EMOS, Gneiting et al. 2005) is applied here. EMOS converts an ensemble of K discrete forecasts $\boldsymbol{f}=\left(f_{1}, f_{2}, \ldots, f_{K}\right)^{T}$ into a predictive density:

$$
\begin{equation*}
y \mid \boldsymbol{f} \sim g(m, \sigma), \tag{1}
\end{equation*}
$$

where $g(\cdot)$ is a parametric density function with location and scale parameters m and σ, respectively, which depend on the raw ensemble. Typically, post-processing increases forecast skill. Skill of probabilistic forecasts is often measured by the negatively oriented continuous ranked probability score (CRPS, Hersbach 2000):

$$
\begin{equation*}
\operatorname{CRPS}(F, y)=\int_{-\infty}^{\infty}\left[F(x)-\mathbb{1}_{[x \geq y]}\right]^{2} d x, \tag{2}
\end{equation*}
$$

where F is the predictive CDF and y is the verifying observation. Figure 1 shows CRPS values of the raw ensemble and the EMOS forecasts for the variables 2 m temperature (T2M), 24 h precipitation (PPT24), and near surface wind speed (V10)

2. Research question and methods

The ECMWF forecast ensemble is under continuous development (Buizza et al., 1998, 2007; Richardson et al., 2013; Haiden et al., 2014). Hence, its forecast skill improves over time due to the following causes

1. bias reductions and increased reliability \rightarrow competes with statistical post-processing 2. an increase in potential skill \rightarrow complementary to statistical post-processing

In order to determine which of the above causes is more important, the evolution of the CRPS difference $\triangle \mathrm{CRPS}_{t}=\mathrm{CRPS}_{\text {raw }, t}-\mathrm{CRPS}_{\text {EMOS }, t}$ is evaluated over time (Hemri et al, 2014). The following two approaches are used:

- Fit a parametric regression model to $\Delta \mathrm{CRPS}_{t}$ and evaluate the estimates $\hat{\beta}_{1}$:

$$
\begin{equation*}
\Delta \mathrm{CRPS}_{t}=\beta_{0}+\beta_{1} t+\beta_{2} \sin \left(\frac{2 \pi t}{12}\right)+\beta_{3} \cos \left(\frac{2 \pi t}{12}\right)+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right) \tag{3}
\end{equation*}
$$

- Correct for seasonal effects by fitting the following model to Δ CRPS $_{t}$

$$
\begin{equation*}
\Delta \mathrm{CRPS}_{t}=\gamma_{0}+\gamma_{1} \sin \left(\frac{2 \pi t}{12}\right)+\gamma_{2} \cos \left(\frac{2 \pi t}{12}\right)+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right), \tag{4}
\end{equation*}
$$

and then use the non-parametric Kendall's τ rank correlation test to check for a significant trend in the residuals of model (4)

These models are fitted for each variable, station, and lead time seperately. Two examples for ECMWF forecasts with a lead time of 6 days are shown in figure 2 .

3. Results

There is no clear trend in \triangle CRPS. Table 1 shows the percentages of SYNOP stations (totals are 4160 (T2M), 2917 (PPT24), and 4387 (V10)) showing no, negative, or positive trend in monthly \triangle CRPS values against time at a significance level of 0.05 . Stations with no significant trend outnumber the stations with either negative or positive trend.

Tab.1: Percentages of stations with significant trend in \triangle CRPS.

	parametric model			Kendall's τ statistic		
	T2M	PPT24	V10	T2M	PPT	V10
no significant trend	42 \%	76%			77	42
$\pm \mathrm{m}$ negative trend	34 \%	19 \%	31 \%	32	18%	29 \%
positive trend	24 \%	5 \%	28 \%	24 \%	5 \%	
no significant tren	46 \%	82\%	43 \%		82 \%	兂
negative trend	31 \%	14 \%	31 \%	29 \%	13%	29
positive trend	23 \%	4%	26 \%	23 \%	5%	27 \%
no significant trend	54 \%	83\%	45 \%		82\%	46
\bigcirc negative trend	27 \%	11 \%			11%	
positive trend	19	6 \%				

A station-wise assessment of significant trend in $\triangle \mathrm{CRPS}$ is shown in figure 3:

Fig.3: Significants trend in \triangle CRPS according to the Kendall's τ correlation coefficient test.

4. Conclusions

- Skill of both the raw ensemble and the EMOS forecasts improves over time
- The gap in \triangle CRPS remains almost constant over time
- Improvements to the atmospheric model are increasing potential skill
- Statistical post-processing will keep adding skill in the foreseeable future.

5. References

[1] P. Bougeault et al., Bull. Am. Meteorol. Soc., 91 : 1059-1072, 2010. [2] R. Buizza et al., Q. J. R. Meteorol. Soc., 124: 1935-1960, 1998 [3] R. Buizza et al., Q. J. R. Meteorol. Soc., 133: 681-695, 2007. [4] T. Gneiting et al., Mon. Weather Rev., 133: 1098-1118, 2005 [5] T. Haiden et al., ECMWF Tech. Memo. 723, 34 pp., 2014 [6] S. Hemri et al., Geophys. Res. Lett., 41: 9197-9205, 2014 [7] H. Hersbach., Weather Forecasting, 15: 559-570, 2000. [8] Y. Park et al., Q. J. R. Meteorol. Soc., 134: 2029-2050, 2008.

