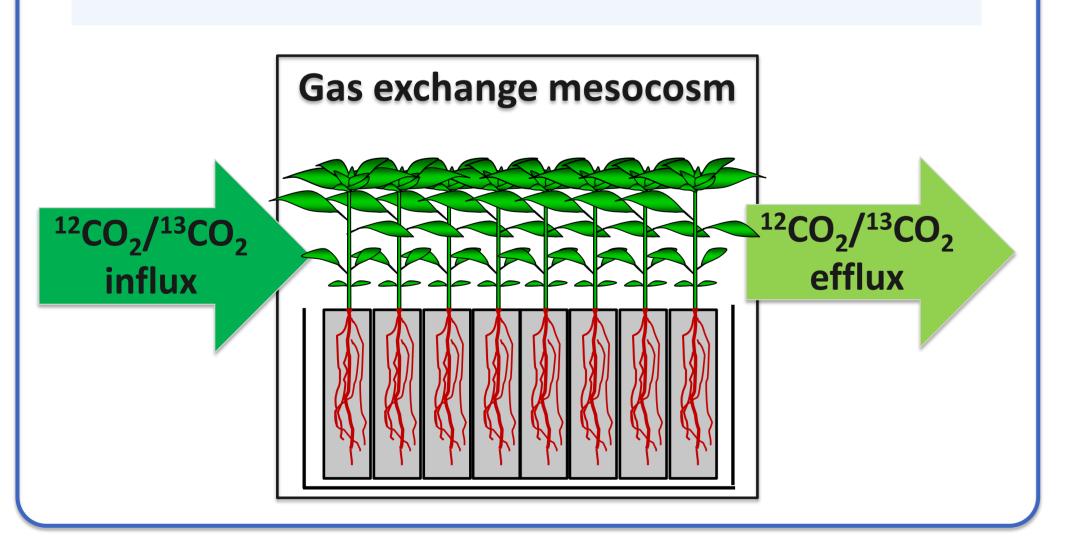
Atmospheric CO₂ level affects carbon use efficiency of sunflower stands

1 Introduction

Plant carbon use efficiency, CUE = NPP/GPP $= (\sum A - \sum R_D)/(\sum A + \sum R_L)$, with A the net assimilation rate, and $R_{\rm L}$ and $R_{\rm D}$ the dark respiration in light and in dark

• A major uncertainty on CUE: $R_{\rm L}$ at stand-scale.

• We measured stand-scale $R_{\rm I}$, using a dynamic labeling technique, and determined the response of CUE to $[CO_2]$ level.


2 Methods

Sunflowers were grown in gas exchange mesocosms with $[CO_2]$ levels of 200 ppm and 1000 ppm.

• A and $R_{\rm D}$ were monitored.

• $R_{\rm L}$ was quantified by the ¹³C dynamic labeling approach of Schnyder et al. (2003).

Respiratory substrate supply system was characterized by compartment modeling of tracer kinetics in dark respiration.

References

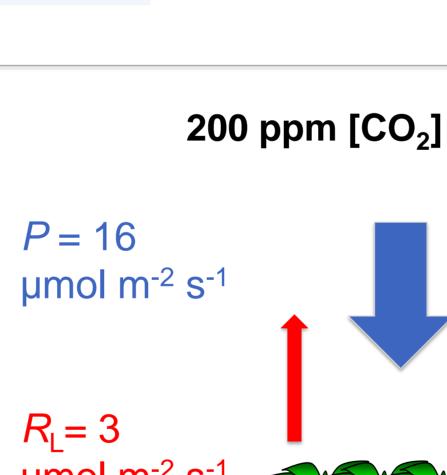
Gifford, R.M., 2003. Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research. Funct. Plant Biol. 30, 171-186. Schnyder, H., Schäufele, R., Lötscher, M., Gebbing, T., 2003. Disentangling CO₂ fluxes: direct measurements of mesocosm-scale natural abundance ${}^{13}CO_2/{}^{12}CO_2$ gas exchange, ${}^{13}C$ discrimination, and labelling of CO₂ exchange flux components in controlled environments. Plant, Cell and Environ. 26, 1863-1874.

Xiao Ying Gong, Rudi Schäufele, Hans Schnyder Lehrstuhl für Grünlandlehre, Technische Universität München

3 Results

Morphological responses

Elevated [CO₂] increased biomass per plant and root mass ratio, and decreased leaf mass ratio.


• CO₂ fluxes and carbon balance

Elevated $[CO_2]$ increased all CO_2 fluxes: Pwas increased by 91%, $R_{\rm D}$ by 97%, $R_{\rm L}$ by 142%.

The extent of temperature adjusted inhibition of dark respiration in light $(1 - R_L/R_D_{adj})$ was lower at elevated $[CO_2]$ (6%) than at subambient $[CO_2]$ (25%)

CUE was higher at the subambient $[CO_2]$.

Fig. 1 CO₂ exchange rates and CUE of sunflower stands: net photosynthesis rate (P), rate of dark respiration in light (R_1) , and rate of dark respiration in dark $(R_{\rm D})$

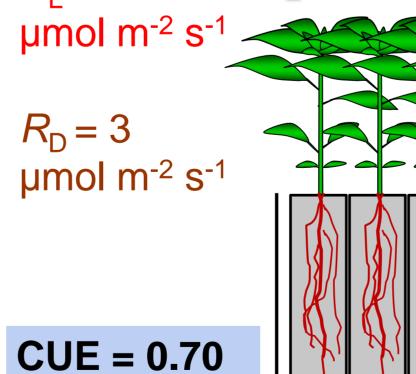
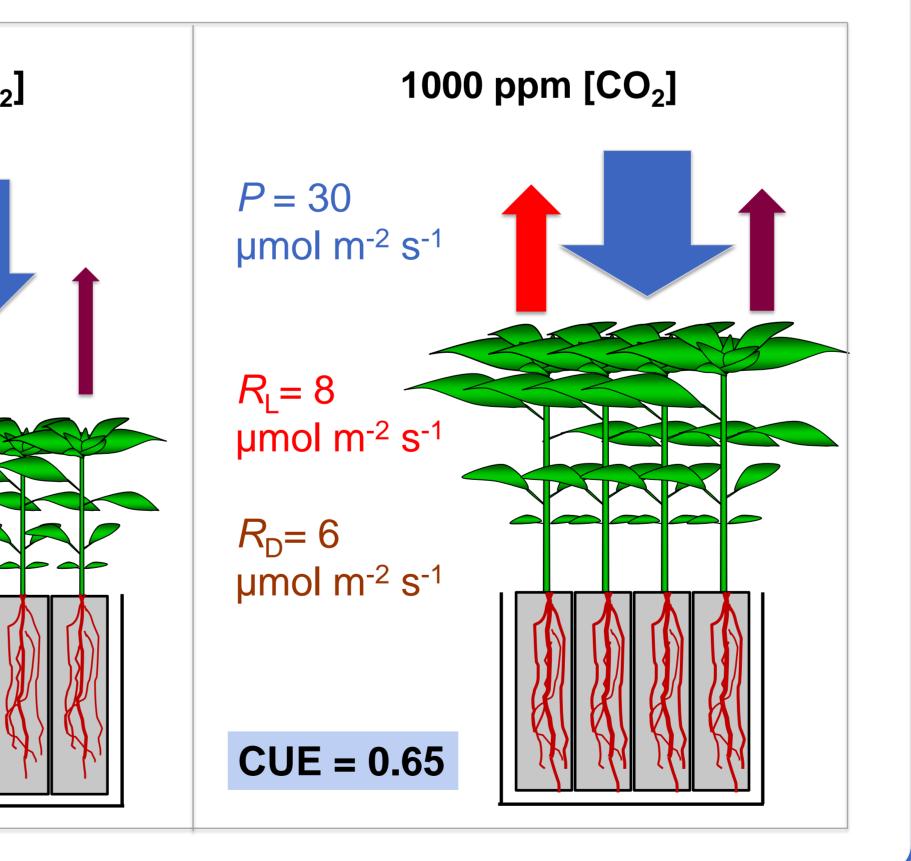



Table 1 The responses of morphological parameters to $[CO_2]$ level. Results are means \pm standard error of means.

Biomass (g plant⁻¹) Leaf mass r Stem mass Root mass

	200 ppm [CO ₂]	1000 ppm [CO ₂]	Elevated/ subambient
	5.7 ± 0.5	8.7 ± 0.5	1.5
ratio	0.37 ± 0.02	0.25 ± 0.01	0.7
s ratio	0.36 ± 0.02	0.36 ± 0.02	1.0
ratio	0.28 ± 0.03	0.39 ± 0.03	1.4

Acknowledgments

This research was supported by the European Community's Human Potential Program, HPRN-CT-1999-00059, NETCARB

4 Conclusions and discussion

- shown).
- using measured $R_{\rm L}$

Contact:

• Elevated [CO₂] increased $R_{\rm I}/R_{\rm D}$, decreased CUE

• The [CO₂] effect on CUE discourages the use of a constant CUE in carbon cycling models (as reviewed by Gifford 2003).

• CUE was related to:

1) leaf mass ratio, i.e. the ratio of autotrophic biomass to total biomass;

2) the inhibition of dark respiration in light;

3) the contribution of stores to respiration (data not

• Our study provided the first assessment on CUE

The quantification on CUE will contribute to more precise predictions of the responses of terrestrial ecosystems to climate change.

