Experiences from coordinated national-level landslide and flood forecasting in Norway

I. K. Krøgli, A. Fleig, P. A. Glad, M.-P.J. Dahl, G. Devoli, H. Colleuille, EGU general assembly 2015

Landslides = Debris slides, debris flows, debris avalanches and slush flows

Hydrological models

Hydrometeorolgical observations

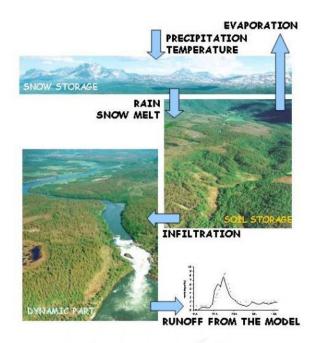
Decision-making tools

Human resources

Management / economy

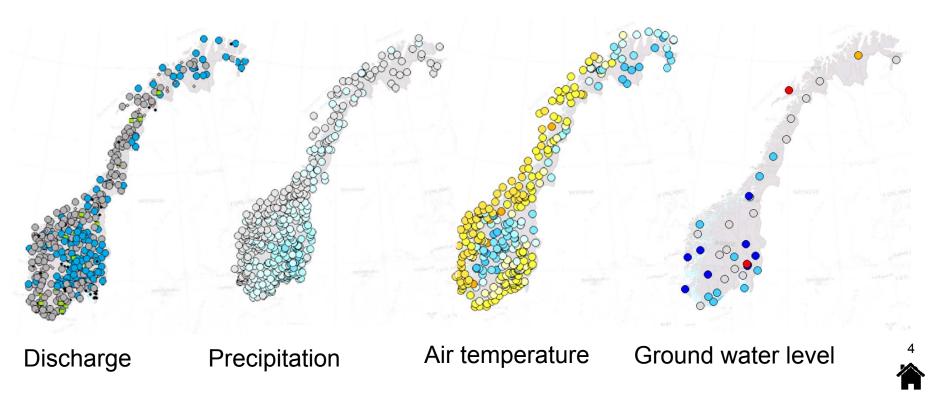
Warning levels

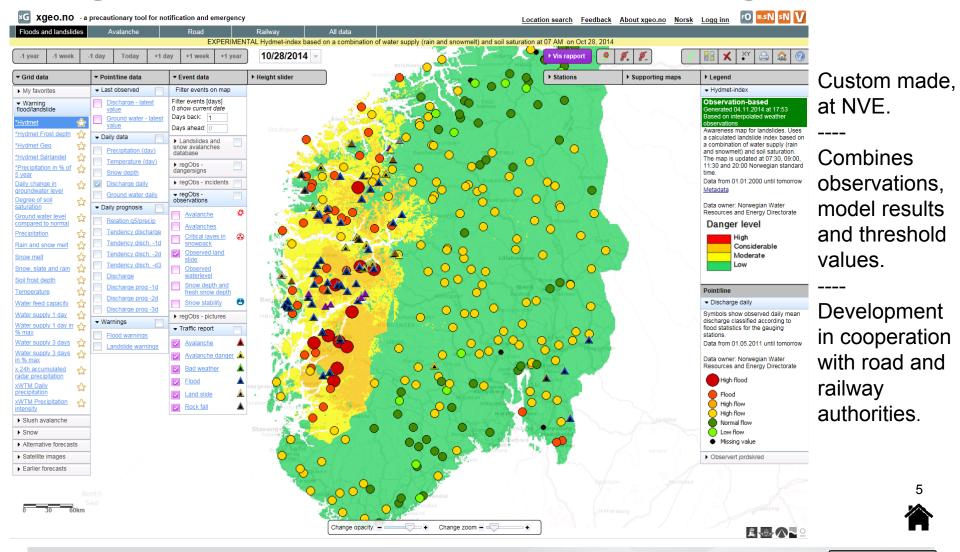
Communication


Recent events

Hydrological models

- Distributed HBV-model. 1 km² grid cells.
- Input:
 - Observation on discharge, temperature and precipitation
 - Prognosis on temperature and precipitation.
- Output:
 - Discharge, snow water equivalence and snow depth, soil water content, ground water content, soil frost depth and more.





Hydrometeorological observations

 Provided by Norwegian Water Resources and Energy Directorate, Norwegian Meteorological Institute, railway and road authorities.

Xgeo.no – our decision-making tool

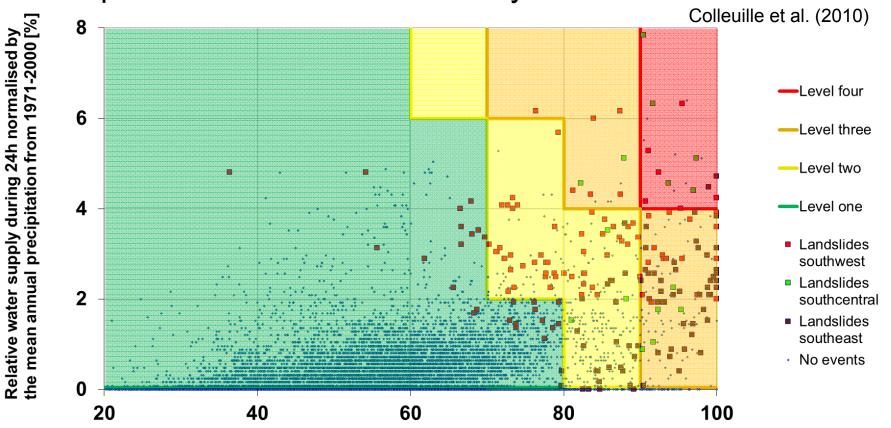
Human resources

- Multidisciplinary teams
- 23 hydrologists and geoscientists
- 12 women and 11 men
- Age from 30 to 59 years

- Flood warning: 14 persons, landslide warning: 12 persons
- Both flood and landslide warning: 5 persons
- Flood/landslide and snow avalanche warning: 3 persons

Management and economy

- Cost, total for flood and landslide services: € 1.4 mill
 - Includes forecasters compensation, research & development, management, etc.
- Both flood and landslide forecasting are organized under Hydrology department, section for Flood and Landslide forecasting.
- Early warning systems share economy.
 - Since regional landslide forecasting is a new service, some funding is earmarked for development on landslide forecasting methods.
 - Mutual spin-off effects are considerable for both services!



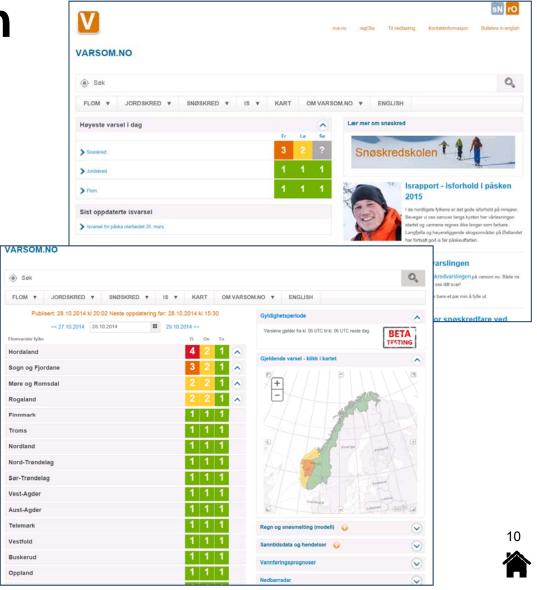
Warning levels

Level	Flood - Probability and extent	Landslide – Extent and damages
4	Runoff larger than 50 year flood Severe flooding and damages. Risk for lifes.	Large and smaller landslides are expected, in many numbers and with in a large geographical area. Dangerous situation threatening lifes, valuables and infrastructure.
3	Runoff larger than 5 year flood Extensive flooding, local damages.	Some large and smaller landslides are expected. Accidents and damage on valuables are expected.
2	Unusually large runoff, risk of ice-jam, local flooding due to local heavy rainstorm.	Landslides possible, mainly shallow debris slides along roads, railways and rivers. Landslides may happen locally due to high intensity rainfall /snowmelt and /or human activities.
1	Generally safe conditions.	Generally safe conditions. Landslides that are not related to water may happen (rock fall and quick clay slides)

Hazard thresholds in landslide warning system

Empirical tree-classification analysis of 206 landslide events

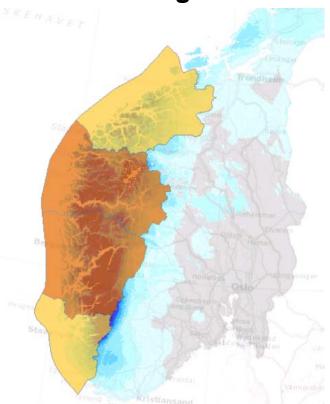
Relative soilwater content simulated by the HBV model and normalised by the maximum simulated $_9$ soil water content (assumed fully saturated soil) during 1990-2008 [%]


Communication

VARSOM.NO

Web site for forecasts on floods, landslides, snow avalanches and reports on safety on ice

Varsom = vigilance, cautious, careful

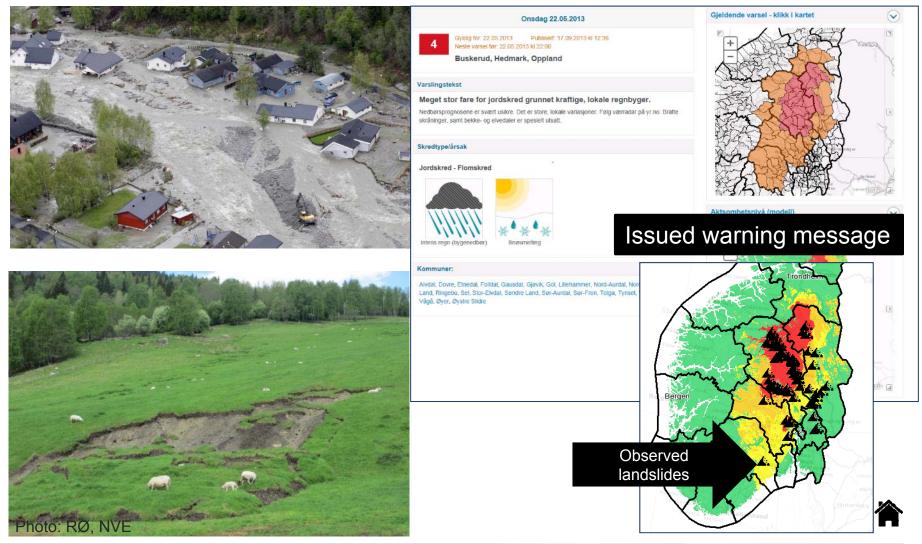


Flooding and landslides, Western Norway – 27th-29th October 2014

Landslide warnings on 28th

Flood warnings on 28th

Background map: Rain and snowmelt 24/hr, from 27th to 28th, 300 mm / 3 days.


Finans Norge anslår at flommen på Vestlandet vil ende med mellom 100 og 150 millioner kroner i naturskadeerstatninger.

«The flood may cost 150 mill NOK (€ 17 mill) in compensatory damages»

Landslides, Eastern Norway May 2013

References / literature

- Sælthun, N.R. (1996). The Nordic HBV model. Norwegian Water Resources and Energy Administration Publication 7, Oslo, 26 pp.
- Beldring, S., Engeland, K., Roald, L.A., Sælthun, N.R., Voksø, A. (2003).
 Estimation of parameters in a distributed precipitation-runoff model for Norway. Hydrology and Earth System Sciences, 7, 304-316.
- Boje S, Colleuille H, Cepeda J, Devoli G (2014). Landslide thresholds at regional scale for the early warning system in Norway. Proceeding 3rd World Landslide Forum 3, 2-6 June 2014, Beijing.
- Devoli G., Kleivane I., Sund M., Orthe N-K., Ekker R., Johnsen E., Colleuille H. (2014). Landslide early warning system and web tools for real-time scenarios and for distribution of warning messages in Norway. Proceeding IAEG 2014, 15-19 September, Torino, Italy

Relevant on EGU 2015

EOS8 – Geoethics for society: General aspects and case studies in geosciences:

EGU2015-15395, Wed 15 Apr, 17:30 – 19:00

Geoethical considerations in early warning of flooding and landslides: Case study from Norway

Graziella Devoli, Ingeborg Kleivane Krøgli, Mads Peter Dahl, Hervé Colleuille, Søren Nykjær Boje, and Monica Sund

NH3.8 – Prediction and forecasting of landslides:

EGU2015-11282

Operational early warning of shallow landslides in Norway: Evaluation of landslide forecasts and associated challenges Mads-Peter Dahl, Hervé Colleuille, Søren Boje, Monica Sund, Ingeborg Kleivane Krøgli, and Graziella Devoli

