
SL sampling creates  𝐔 by generating a (N × K) matrix VL with a stratified sample of size N from K uncorrelated

standard Gaussian deviates, computing the vector ‖ VL ‖ with the N scalar norms of the rows of VL, and computing

the (N × K) matrix  𝐔L = diag(‖ VL ‖)
-1 VL ; the N rows of  𝐔 approximate N stratified, unit norm, realizations or

points on the surface of a unit hyper-sphere in a K dimensional hypersphere. SL sampling does not guarantee an

optimal (with minimum energy ) placing the N points on the surface of a unit (hyper)sphere.

ME sampling first generates N random points on the surface of the unit (hyper)sphere. Then a repulsive force

vector, based on 1/r2 , where r denotes the smallest linear distance between two neighbouring points, is calculated

for each point. The resultant force vector is normalized, and then each point is displaced a distance S = 1 in the

direction of that force, and finally projected back down onto the unit sphere [7]. When the system nears

convergence, the displacement vector for a given point is nearly in the same direction as the radius vector for that

point due to the points being equally distributed [5]. The steps for generating N stratified points using ME

sampling are shown in Figure 3, where the point, depicts the transition from random points (small) to the system

minimum energy convergence (large).
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2 Materials and Methods
In this work we investigate the efficiency of alternative methods to classical LH sampling within the context of

simulation of flow and transport in a heterogeneous porous medium. More precisely, we consider the stratified

likelihood (SL) sampling method of [3], in which attribute realizations are generated using the polar simulation

method by exploring the geometrical properties of the multivariate Gaussian distribution function. In addition, we

propose a more efficient version of the above method, here termed minimum energy (ME) sampling. In both cases

a set of N representative conductivity realizations at M locations is constructed by: (i) generating a representative

set of N points distributed on the surface of a M-dimensional, unit radius hyper-sphere, (ii) relocating the N points

on a representative set of N hyper-spheres of different radii, and (iii) transforming the coordinates of those points

to lie on N different hyper-ellipsoids spanning the multivariate Gaussian distribution [4] (Figure 2).

The above steps for generating a stratified sample of size N from a multivariate Gaussian PDF are summarized as

Y = diag(x) 𝐔C +MY , where diag(x) is a (N × N) diagonal matrix having as diagonal entries a set of N deviates

x = [xn, n = 1,…,N]T from a chi distribution with K degrees of freedom, term  𝐔 is a (N × K) matrix with uniform

deviates in [-1, 1], all rows of which are constrained to have a unit norm and MY is an expectation matrix (N × K).
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The performance of sampling methods, LH, SL, and ME, is compared

for different sample sizes N (10 -30), to that of SR sampling in terms of

reproduction of ensemble statistics of reference (10000 SR realizations)

hydraulic conductivity and solute concentration fields (Figure 7)

3. Results

Figure 1. Workflow for Monte Carlo uncertainty propagation
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1. Introduction
Uncertainty analysis in hydrogeological investigations involving flow and transport in heterogeneous porous 

media is often conducted in a Monte Carlo framework to evaluate, for example, the uncertainty in the spatial 

distribution of solute concentration due to the uncertainty in the spatial distribution of hydraulic conductivity. In 

this context, the spatial distribution of hydraulic conductivity is frequently parameterized in terms of a lognormal 

random field model, from which simulated conductivity realizations are often generated via geostatistical

simulation involving simple random (SR) sampling from the multivariate (log)normal distribution [1]. Realistic 

uncertainty analysis, however, calls for a large number of simulated conductivity fields; hence, can become 

expensive in terms of both time and computer resources. 

A more efficient alternative to SR sampling is Latin hypercube (LH) sampling, a special case of stratified  random 

sampling, which yields a more representative distribution of simulated attribute values with fewer realizations [2]. 

Here, term representative implies realizations spanning efficiently the range of possible attribute values 

corresponding to the multivariate (log)normal probability distribution associated with the  random field model. 

Figure 2. Three dimensional depiction for generating a stratified sample of size N from 
a multivariate Gaussian PDF

Figure 3. Three dimensional depiction for generating a ΜΕ sample of N points on the surface of 
the unit (hyper)sphere.

The ability of  the three stratified sampling methods (LH-SL-ME) considered in this study, at 

furnishing representative attribute values, in terms of maximum dissimilarity between them, 

was explored by generating correlated hydraulic conductivity values at nine control points. 

The results are illustrated in Figure 4A, where for both sample sizes under consideration

– 10 / 30 – ME sampling displays the largest nearest neighbour dissimilarities in simulated 

hydraulic conductivity values. Figure 4B depicts the dissimilarities of concentration values at 

the same control points, resulting from the hydrogeological model evaluation.

The above methods, along with the LH 

sampling method are applied in a 

dimensionality reduction context by selecting 

flow-controlling points over which 

representative sampling of hydraulic 

conductivity is performed, thus also accounting 

for the sensitivity of the flow and transport 

model to the input hydraulic conductivity field 

[6]. According to [4], one could consider 

control points at regions of highest uncertainty 

in terms of data control, or alternatively in 

terms of model response uncertainty. Moreover, 

control points should correspond to application-

specific important locations in terms of 

controlling the variance of realizations of model 

outputs; in this case, the ensemble standard 

deviation of solute concentration (Figure 5).

Figure 5. Application - specific control points 
plotted on the ensemble standard deviation field 
of concentration

10, 30

2

Figure 6. Workflow for evaluating the performance of simulation methods.

Figure 4. CDF of nearest neighbour distances – dissimilarities between simulated values of A) hydraulic 
conductivity (cosine metric) and B)concentration (mahalanobis metric), at nine control points (eight points  
radially emanating along the first areola depicted as stars along the central point depicted as circle at Figure 5)
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Figure 7. Ensemble mean (left) and standard deviation (right) reference 
concentration fields .

4. Conclusions and Discussion
The performance of the proposed ME sampling method was investigated in a hydrogeological context via a synthetic case study involving

flow and transport in a heterogeneous porous medium, in comparison to stratified sampling methods LH and SL along with SR sampling. The

statistics considered for hydraulic conductivity included the ensemble mean, standard deviation, as well as short-scale correlation and

distribution of Mahalanobis distances from the ensemble mean. The reproduction of similar statistics for the ensemble concentration field

resulting from solving a flow and transport boundary problem for each hydraulic conductivity realization, was also evaluated in the second

part of the case study. For all statistics considered for both model inputs (Fig. 8) and outputs (Fig.9), ME sampling constitutes an equal if not

more efficient simulation method than LH and SL sampling, as it can reproduce to a similar extent statistics of the reference conductivity and

concentration fields, yet with smaller sampling variability than SR sampling. Concluding, the proposed ME sampling method offers a viable

alternative to existing stratified sampling methods.
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Figure 9. Reproduction of ensemble statistics i) mean, ii) std deviation and iii) mahalanobis distances, between concentration realizations and the ensemble average 
concentration field. 

Figure 8. Reproduction of ensemble statistics i) mean, ii) std deviation and iii) correlation, between hydraulic conductivity realizations and the ensemble average 
hydraulic conductivity field. Reproduction is quantified here in terms of the sampling distribution of RMSE between reference and simulated ensemble concentration 
statistics .
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