

Outline

- Introduction
- Warming and salinification
- The Western Mediterranean Transition
- WMT propagation
- Abyssal mixing in the WMED
- Ship-based hydrography
- Conclusions

ntroduction

nment,

Longitude

30°E

Introduction

"Miniature ocean"

Deep water formation varying on interannual time scales

Well defined overturning circulation

Distinct surface, intermediate & deep water masses circulating between W and E

Useful for climate change studies

10°W

Much shorter time scales than the global ocean (60 yrs turnover vs 500 yrs)

10°E

20°E

- documenting changes within it → anticipate similar changes in the global ocean
- understanding the role of key processes involved in climate change → inferences on those processes on the global scale

Introduction

Concentration basin

higher salinity than the outer ocean due to **evaporation** exceeding precipitation Surface inflow of fresher water and subsurface outflow of saltier water

Introduction

In the North western Mediterranean Sea shelf and open sea **convection** occasionally occurs, generating new deep waters:

general cyclonic circulation

Warming and salinification

1950-2010: below 1000 m the Mediterranean underwent the strongest salinity gain **anywhere in the world ocean**

→ "Mediterranean signal" clearly imprinted in the N-Atlantic IL

Warming and salinification

The deep waters of the WMED became gradually saltier and

warmer for at least the past 40 years

0.015 and 0.04 °C per decade!

Borghini et al., 2014

Depth averaged values > 200 dbar		
Year	Salinity	Pot. temp
1961	38.406	12.766
1975	38.431	12.822
1995	38.452	12.879
2004	38.477	12.966

Western Mediterranean Transition

Enhanced thermohaline variability during WMT

Features occurring in the last 10 yrs not previously observed to this extent:

- 1. the filling up of the WMED with new anomalous dense water
- 2. a significant and stepwise warming, salinification, densification and ventilation of deep waters
- 3. a warming and salinification of the thermocline/halocline between the intermediate water and the new deep water
- 4. a substantial modification of deep θS diagrams, with the appearance of complex hooks and inversions
- 5. a **new stratification** prone to different **double diffusive mixing** regimes
- 6. potential modification of the MOW (Mediterranean Outflowing Water)
- 7. a **perturbation of the deep Tyrrhenian** Sea, due to the propagation of these anomalies through the Sardinian Channel

Western Mediterranean Transition

- ✓ Since 2004 increases in deep water T and S were 2 times faster than during 1961-2004
- ✓ Winter 04/05 sets the **beginning of WMT**: exceptional DWF changed basic structure of the IL and DL

Western Mediterranean Transition

Dissolved oxygen

WMT propagation to the west

- 2008: new WMDW has been sucked by Bernoulli aspiration to much shallower depths in the Alboran Sea (in the Algerian Sea the same isopycnal was found 1 km deeper)
- westward flow along the Moroccan continental slope → anticyclonic Alboran gyre throughout the water column.

 σ > 29.108 kg m⁻³ (higher than σ of old WMDW)

 σ > 29.11 kg m⁻³

■ The **equilibrium depth** of MOW in the Atlantic could change

WMT propagation to the east

- ■2005: only the "classical" old WMDW was found
- ■2006-07: first signatures of the new denser WMDW
- ■2009: first signature along the trench axis in the Sardinia channel
- ■2010: first signature inside the Tyrrhenian (335 m thick)
- **2010-2014**: whole layer below LIW (> 500 m), has densified > 29.11-
- 29.12 kgm⁻³ \rightarrow denser then the "classical" resident deep water
- →WMT signature is well evident in the whole basin: deep ventilation

Year (station date)

- nWMDW dense enough to cascade down to the bottom of the Tyrrhenian and ventilate it (> 3 km)
- Tyrr has higher resident heat and salt contents: negative jump in T-S
- different stratification than in the WMED: salt fingers → efficient downward mixing of T and S

Abyssal mixing in the WMED

- Assess mixing levels associated to WMT
- First distribution maps of TKE and vertical diffusivities in the deep WMED
- Identify **sources of turbulence** (tide, wind and topography)

<u>Dissipation rates (vertical mean > 100 dbar)</u>

- weak $<\epsilon>$ (0.5-1 x 10⁻¹⁰ Wkg⁻¹) in deep sea
- slight intensification (up to 1-5 x 10⁻¹⁰ Wkg⁻¹) along coastal slopes
- enhanced values (10⁻⁹ to 10⁻⁷ Wkg⁻¹) in channels → turbulence hotspots

VMP

VMP

Abyssal mixing in the WMED

Deep Tyrrhenian Sea → extremely low dissipation values

- quasi-permanent thermohaline staircases (salt finger mixing)
- •VMP measured similar dissipation of turbulent kinetic enenrgy ϵ (very weak, <10⁻¹⁰ W kg⁻¹) in layers and steps
- strong differences for **dissipation of temperature variance: χ** is higher by 2-3 orders of magnitude in the steps as compared to the layers

Ship-based hydrography

Sustained ship-based monitoring gave insights into the spreading of the new deep water from its formation region into the WMED interior, towards Gibraltar and the Tyrrhenian Sea.

Ship-based hydrography

An important component of a suitable **monitoring strategy** should rely on regular ship-based surveys, to provide data over the entire water column (more than **20% of Mediterranean volume** is deeper than **2000 m**)

Ship-based component of the **observing system** in the Mediterranean is not yet as well defined as other component

Global hydrographic surveys since the 70s (GEOSECS, WOCE / JGOFS, CLIVAR, GOSHIP)

The Mediterranean Sea was not included

Ship-based hydrography

Primary **objectives** for the **Med-SHIP** repeat hydrography

(1) to observe long-term changes in physical and biogeochemical properties(2) to observe changes in the thermohaline circulation

Med-SHIP is a CIESM initiative, www.ciesm.org

Conclusions

- ➤ Mediterranean is a **climate change hot spot**: we expect a continuation of the **warming** and **salinification** process in the WMED
 - MOW properties and outflowing depth may change
- ➤ a salty warm anomaly in the WMED produced a fresh cold anomaly in the Tyrrhenian Sea, triggering its deep ventilation
 - the Tyrrhenian will continue to be ventilated at the bottom
- >WMT induced different mixing regimes in different layers of the water column and in different areas
- First direct mixing measurements in the deep WMED
 - the Tyrrhenian is an end-member of **extremely low dissipation values**
- ➤ Med-SHIP should become part of the GOOS as a reference component for long term studies of processes, events and changes in the Mediterranean.

Acknowledgement

EGU council members for this award

Prof. Harry Bryden for the nomination and scientific support

The Ocean Observation and Climate Research Team at CNR ISMAR: Jacopo Chiggiato, Mireno Borghini, Simona Aracri, Gian Pietro Gasparini, Stefania Sparnocchia, Anna Vetrano, Sara Durante, Carolina Cantoni et al.

Other collaborators: Sana Ben Ismail, Cherif Sammari, Bruno Ferron, Pascale Bouruet-Aubertot, Toste Tanhua, Marta Alvarez, Simon Josey et al.

My husband, my "big" son and my little twins

tituto di Scienze Marine