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3 things I am not going to talk about 

1.  Water is an essential resource 
2.  Water resources are under increasing pressure 
3.  We need novel approaches to water resources management 
 
 
 
 
 
 

1 question I would rather discuss 
Can numerical models help to improve water resources management? 
 



 
francesca.pianosi@bristol.ac.uk 

 






5 REASONS 
NOT TO USE NUMERICAL MODELS�

IN WATER RESOURCES MANAGEMENT


Francesca Pianosi, University of Bristol 



 
francesca.pianosi@bristol.ac.uk 

 






4 REASONS 
NOT TO USE NUMERICAL MODELS�

IN WATER RESOURCES MANAGEMENT


Francesca Pianosi, University of Bristol 



 
francesca.pianosi@bristol.ac.uk 

 



REASON #1




The models we use are so complex that�

we have no idea what is really happening in there
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à Sensitivity Analysis (SA) is a set of statistical techniques that provide 
 such a structured approach 

 
 

As we use increasingly complex models we need formal, 
structured approaches to support model calibration, verification 
and diagnostic evaluation 

X-Ray Vision: Fish Inside out: www.mnh.si.edu/exhibits/x-ray-vision/ 

WHAT 
does the model predict?	
  

WHY 
does it predict so?	
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Sensitivity of model performance 
to variations in the 13 model parameters 
[model: HBV+snow accounting as in Kollat et al 2012 WRR ] 

 

Application example 
to hydrological model 
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Application example 
to flood inundation model 
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James Savage et al., in progress spatial 
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EGU presentation on Sensitivity Analysis 

Mon, 13 – 13:30 – Session HS3.3 – PICO Session - EGU2015-1356  
SAFE(R): A Matlab/Octave Toolbox (and R Package) for Global Sensitivity Analysis    

  
bristol.ac.uk/cabot/resources/safe-toolbox/ 

Pianosi et al. EMS in press 

Wed, 15 – Session NP1.3/HS2.3.16 - Blue Posters - EGU2015-2218 
Global Sensitivity Analysis of Environmental Models: Convergence, 
Robustness and Validation by Fanny Sarrazin et al. 

Wed, 15 – 11:45 - Session NH1.6 - Room G6 - EGU2015-13145 
The application of Global Sensitivity Analysis to quantify the dominant 
input factors for hydraulic model simulations by James Savage et al. 

Fri, 17 – Session NH3.11 – Blue Posters - EGU2015-6555 
Robustness for slope stability modelling under deep uncertainty 
by Susana Almeida et al. 
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We use increasingly complex�
and ‘non-intuitive’ models�

+�
Increasing availability of data types�

adds up to model complexity




However

We have more and more sophisticate methods�

to investigate model behaviour�
and�

We have ever growing computing power�
to put those methods into practice
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REASON #2




Water resource management problems�

involve multiple, conflicting sectors�



Therefore there is no possibility�
to take rational (‘optimal’) decisions
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Example from Ticino River, Italy 
How to redefine the 

Minimum Environmental Flow 
for the river? 
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Bizzi et al. 2012 JoH 

Indicators of Hydrological Alteration - Stochastic Dynamic 
Programming - Multi-Criteria Analysis 
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Indicators of Hydrological Alteration - Stochastic Dynamic 
Programming - Multi-Criteria Analysis 



 
francesca.pianosi@bristol.ac.uk 

Example from Lake Como basin 
How to mitigate the conflict between 

upstream and downstream users? 

Anghileri et al. 2013 JWRPM 
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Multi-Criteria Analysis and Multi-Objective Optimization 
provide the framework�

to analyze tradeoffs between conflicting criteria�
and to design Pareto-optimal solutions�



Sometimes win-win solutions can be found�



In all cases, MCA and MOO help supporting�

the investigation of tradeoffs�
and therefore increase transparency of decisions
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REASON #3




Model predictions are uncertain�

and it is not possible to make good decisions�
based on uncertain predictions
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Example from 4-reservoirs system 
in the Seine river basin, France 

How much can we improve the efficiency 
of existing infrastructure by making the best use 

of model forecasts? 
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www.uni-kassel.de/fb14/wasserbau/CLIMAWARE/home/home.html 

Ficchì et al., JWRPM, under review 
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Step 1: Assessing the potential 
of Real-Time Optimisation 

Simulation over 15-year period (01/08/1973-01/11/1988)  

!
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Step 2: Assessing the value of available forecasts 
for Real-Time Optimisation 
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Step 2: Assessing the value of available forecasts 
for Real-Time Optimisation 
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à Explicit consideration of forecast uncertainty 
can almost fill the performance loss 
due to forecasts inaccuracy 
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�







Although uncertain, model predictions�
can still have value for decision-making �

�
Explicit consideration of uncertainty in decision 

(optimisation) methods help making better decisions �



Combining prediction models and decision theory�
provides a new way to look at models:


from focusing on accuracy in predictions�
to focusing on value for decision-making
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REASON #4




Models are a simplification of the real world,�
and their predictions are just the reflection�

of their underlying assumptions




Therefore we cannot trust and implement the decision�
that a model suggests is ‘best’
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Model results are certainly wrong… 

But does this really matter? 
 
 
 
 
 
 

Christopher Columbus 
(1451-1506) 
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Example from Lake Como basin 

River Adda 

River Adda
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Multi-objective optimization of system operation 
under different institutional setups 
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Modeling exercises are an opportunity for us to�



- think about our understanding of a problem, �
- bring expertise and knowledge together,�
- organize knowledge in a structured way,�
- discover unexpected behaviours or connections,�
- reduce uncertainty about the problem,�
- identify knowledge gaps,�
- raise new questions, 

- …




The main outcome of the modeling exercise�

is the learning process�
induced by the model construction (?)
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CONCLUSIONS
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   3  
things I would do differently of my research so far 

Spend more time on: 
1.  understanding problem context, formulation, previous works, etc. 
2.  interpreting numerical results and their broader implications 
3.  discussing limitations of the proposed solution approach 

 
 
 
 

interpreting 
results 

developing 
solution 

approach 
and 

running 
computations 

framing the 
problem 

discussing 
limitations of 

solution approach 

developing 

framing 

interpreting 
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WHERE I AM NOW
 WHERE I’M AIMING AT
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THANK YOU


SEE THE GLASS 
HALF FULL 

AND 
CARRY ON 

SAILING	
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