
Time-series Data from S/H/I Sensors

Figure 1: Time-series data from global network of seismic, hydro-

acoustic and infrasound (SHI) sensors processed at the International

Data Centre (IDC). Showing processing status per Time Interval (TI).

Setting the Scene

The Preparatory Commission for the CTBTO is an international organization

based in Vienna, Austria. Its mission is to establish a global verification regime to

monitor compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT),

which bans all nuclear explosions. For this purpose time series data from a

global network of seismic, hydro-acoustic and infrasound (SHI) sensors are

transmitted to the International Data Centre (IDC) in Vienna in near-real-time,

where it is processed to locate events that may be nuclear explosions.

See Figure 1.

Accomplishments

We newly designed the distributed application control system that glues together the

various components of the automatic waveform data processing system at the IDC

(IDCDACS). Our highly-scalable solution preserves the existing architecture of the

IDC processing system that proved successful over many years of operational use,

but replaces proprietary components with open-source solutions and custom

developed software. Existing code was refactored and extended to obtain a

reusable software framework that is flexibly adaptable to different types of

processing workflows.

See Figure 2 and Figure 3.

Conceptual Design

Automatic data processing is organized in series of self-contained processing steps,

each series being referred to as a processing pipeline. Pipelines process data by

time intervals, i.e. the time-series data received from monitoring stations is

organized in segments based on the time when the data was recorded. So-called

data monitor applications queue the data for processing in each pipeline based on

specific conditions, e.g. data availability, elapsed time or completion states of

preceding processing pipelines.

See Figure 4.

System Design and Implementation

IDCDACS consists of a configurable number of distributed monitoring and

controlling processes, a message broker and a relational database. All processes

communicate through message queues hosted on the message broker. Persistent

state information is stored in the database. A configurable processing controller

instantiates and monitors all data processing applications. Due to decoupling by

message queues the system is highly versatile and failure tolerant.

The implementation utilizes the RabbitMQ open-source messaging platform that is

based upon the Advanced Message Queuing Protocol (AMQP), an on-the-wire

protocol (like HTML) and open industry standard. IDCDACS uses high availability

capabilities provided by RabbitMQ and is equipped with failure recovery features to

survive network and server outages. It is implemented in C and Python and is

operated in a Linux environment at the IDC.

See Figure 5, Figure 6 and Figure 7.

Configurability, Versatility and Adaptability

Although IDCDACS was specifically designed for the existing IDC processing

system, its architecture is generic and reusable for different automatic processing

workflows, e.g. similar to those described in (Olivieri et al. 2012, Kværna et al.

2012). Major advantages are its independence of the specific data processing

applications used and the possibility to reconfigure IDCDACS for different types of

processing, data and trigger logic. A possible future development would be to use

the IDCDACS framework for different scientific domains, e.g. for processing of Earth

observation satellite data extending the one-dimensional time-series intervals to

spatio-temporal data cubes.

Poster B299

EGU2015-3323
SM1.4/AS4.20 Research and Development in Nuclear Explosion Monitoring

Martin ERTL1, Alexander BORESCH1, Ján KIANIČKA1, Alexander SUDAKOV2, and Elena TOMUTA2

(1) Angewandte Wissenschaft Software und Technologie (AWST) GmbH, Mariahilfer Str. 47/3/1, A-1060 Vienna, Austria

(2) Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Organization, Vienna International Centre, P.O. Box 1200, A-1400 Vienna, Austria

Angewandte Wissenschaft Software und Technologie (AWST) GmbH, Mariahilfer Str. 47/3/1, A-1060 Vienna, Austria

Telephone: +43-1-5861314 – Facsimile: +43-1-5861314-22   – Email Address: ertl@awst.at
Disclaimer: The views expressed on this poster are those of the authors and do not necessarily reflect the views of the CTBTO Preparatory Commission

References 
IDC Documentation: Distributed Application Control System (DACS) Software User Manual IDC-6.5.2Rev0.1, February 2000; and DACS Software Design Description, IDC-7.3.1, June 2001.

Olivieri M., J. Clinton (2012): An almost fair comparison between Earthworm and SeisComp3, Seismological Research Letters, 83(4), 720-727.

Kværna, T., S. J. Gibbons, D. B. Harris, D. A. Dodge (2012): Adapting pipeline architectures to track developing aftershock sequences and recurrent explosions, Proceedings of the 2012 Monitoring Research 

Review: Ground-Based Nuclear Explosion Monitoring Technologies, 776-785.

IDC Documentation: IDC’s Distributed Application Control System (IDCDACS) Software User Manual; and IDCDACS Software Design Description, in preparation.

IDCDACS: IDC’s Distributed Application Control System

Layered Software Architecture 

Figure 2: Application Control Server Programs (blue) are built on top of

a reusable software framework (purple) encompassing domain and

technical services layers. All applications and libraries are implemented

in the C programming language.

ae
si

r

st
d

ti
m

e

p
ar

id
c

ta
b

le

cbase

gdi

ibase

rabbitmq

third party

idcdacs

domain layer

id
cd

ac
sl

o
g

id
cp

ip
el

in
e

id
cr

a
b

b
it

idcstate

technical services layer / application framework

ti
s_

ra
b

b
it

ti
se

g
_

ra
b

b
it

ti
n

_
ra

b
b

it

ti
cr

o
n

_
ra

b
b

it

to
rt

o
is

e

d
b

_
ra

b
b

it

application layer

Software Framework / Object-Oriented Design

Figure 3: Framework libraries provide building blocks in form of

interfaces, classes and configurable objects. They implement common

functionality like application initialization, main control loop, exceptions,

state machine, resource management, transactional messaging, and

client-side failover for high-availability cluster. Bottom up, object-oriented

design leads to simple, analyzable and maintainable code.

dbconn

idcstate::resource

mbconn

mbconsumer

msgstore

idcstate::activity

mbreader

message_builder

msgwriter

genmsg_builder

intvlmsg_builder

message

cmdmsg

sqlmsg

intvlmsg

idcstate::state

state

pseudostate

activity

state_machine

resource

application_signal

event

state_impl

application

shell

Processing Pipelines / Message Flow

Figure 4: Example of a Processing Pipeline with three Processing Steps. Application Control Server Processes (blue) run as daemons listening on

Message Queues (purple). The processing starts with Scheduler periodically publishing to Command Queue, waking up Data Monitor. Data

Monitor checks conditions (data availability, status information, time, etc.) and creates Time Intervals by inserting into Interval Table and publishing

to Task Queue Step 1. An instance of the Generalized Processing Server – Tortoise – executes the appropriate Processing Application (aqua),

reports its return status to Interval Table through Database Update Queue, and publishes to next Task Queue. In this way Time Interval passes

through all Steps of the Pipeline until reaching Done Queue. In case of a processing error Time Interval will be short-circuited into Failed Queue.

Software Components and Processes

Figure 7: Application Control Server Programs are monitored and

controlled with dacsctrl/Scheduler, Message Queues with RabbitMQ

Management Web Console, Time Intervals with WorkFlow (cf. Figure 1).

The System is validated with Automated System Tests.

Monitoring Tools

WorkFlow

syslog
(in prep.)

email

Automated System Tests

pipeline_test.py

pipeline_aux_test.py

pipeline_sel_test.py

pipeline_hase_test.py

Administration Tools

destroyQueues.py

createQueues.py

RabbitMQ
Management

Controlling Tools

dacsctrl
(1 srv)

Scheduler
(crontab)

Application Control Server Programs

Data Monitors

tis_rabbit

tiseg_rabbit

tin_rabbit

ticron_rabbit

tortoise

db_rabbit

Application Control Utilities

send_rabbit

% dacsctrl status

[2015-04-17 17:30:02] dacsctrl run by user auto on host egu2015.awst.at

Sourcing: /dvl/software/shi/config/app_config/distributed/idcdacs/dacsctrl.bashrc

 STATS   USER  ROLE           PROGRAM                                   STATUS

 [1/1]   auto  db_rabbit      db_rabbit                                     OK

 [1/1]   auto  TI-detpro      tis_rabbit                                    OK

?[0/1]   auto  TI-late        tis_rabbit                            NO_PROCESS

 [1/1]   auto  tiseg          tiseg_rabbit                                  OK

 [1/1]   auto  TI-sel1        ticron_rabbit                                 OK

 [0/0]   auto  TI-sel2        ticron_rabbit                                OFF

 [0/0]   auto  TI-sel3        ticron_rabbit                                OFF

 [0/0]   auto  TI-lp          ticron_rabbit                                OFF

 [1/1]   auto  TIN-H01W-GRP   tin_rabbit                                    OK

-[9/10]  auto  DFX            tortoise                         MISSING_PROCESS

+[4/3]   auto  DFX-C          tortoise                          EXCESS_PROCESS

 [5/5]   auto  StaPro         tortoise                                      OK

 [3/3]   auto  GA_DBI-sel1    tortoise                                      OK

 [3/3]   auto  GAassoc-sel1   tortoise                                      OK

 [3/3]   auto  GAconf-sel1    tortoise                                      OK

 [3/3]   auto  WE-sel1        tortoise                                      OK

 [2/2]   auto  HASE           tortoise                                      OK

Deployment / Distribution

Figure 5: Nodes of IDCDACS: 1 Database, 1 Message Broker, 1-N

Processing Servers hosting distributed Application Control Server

Programs and Processing Applications. Operators connect through

SSH and HTTP(S) from Operator Workstations.

Processing
Server 2

Oracle Database
Account (User)

RabbitMQ Message Broker
Virtual Host

Processing
Server 1 Operator Workstations

Processing
Server N

. . .

Messaging / Decoupling / Parallelism

Figure 6: Task Queue decouples Publishing and Consuming Clients,

leading to increased reliability and robustness, and permits parallel

processing – for load balancing and scaling up.

Development Status

A first major Release is running on the IDC development

LAN. Transition to Testbed and Operations LANs is in

progress. A successor project is planned to improve

usability, to extend features, and to lift current limitations.

RabbitMQ Message Broker

Consuming 
Client 1

Publishing 
Client

Data Monitor, Tortoise

publish Task Queuerouting Consuming 
Client 2

Consuming 
Client N

Consumer 1

Consumer 2

Consumer N

Direct 
Exchange

Round-robbin dispatch with 
prefetch=1

consume

consume

consumeConnection + Channel Binding

Connection + Channel

Toirtoise, Database Service


