

Quantifying the contribution of land use and climate change to stream flow alteration in tropical catchments

Hero Marhaento, Martijn J. Booij, Arjen Y. Hoekstra

Water Engineering and Management Group, Faculty of Engineering Technology, University of Twente, The Netherlands

Outline

- Background
- Study Area
- Data Availability
- Methods
- Results
- Conclusion

UNIVERSITY OF TWENTE.

Background

RQ : What is the attribution of changes in stream flow (Δ Q) to land use change and climate change?

😇 🛄 Study Area

THE BENGAWAN SOLO CATCHMENT

- ✓ the largest catchment area on Java, Indonesia i.e. ±16,000 km²
- ✓ Frequently devastated by floods
- ✓ Selected catchments represent the upstream (S1, S2), the mid-stream (S3) and the downstream (S4)

Id	Catchment	Area (km ²)	Av. slope (%)
S1	Pidekso	234.1	15.8
S2	Samin	281.2	10.2
S 3	Madiun	3759.2	9.9
S 4	Kening	837.2	5.8

Data Availability

Hydrological Data

ld	Discharge	Rainfall	Nr Rainfall St	Climate	Nr Climate st
S1	1975-2012	1975-2013	4	1975-2013	
S2	1983-2012	1975-2013	4	1975-2013	0
S3	1982-2012	1975-2013	9	1975-2013	Ζ
S4	1982-2012	1975-2013	4	1975-2013	

Spatial Data

Name of data	Scale/ resolution	Acquisition date	Source
Landsat MSS	57 m	27/09/1972	USGS
Landsat TM	30 m	01/09/1994	USGS
Landsat ETM+	30 m	30/08/2002	USGS
Landsat 8	30 m	20/08/2013	USGS

Methods (1) : A non-modelling approach

- 1. Performing abrupt change detection on annual stream flow using statistical homogeneity test analysis i.e. Pettitt's test
- 2. Calculating the proportion of excess water and the proportion of excess energy for the period before and after the abrupt change of the stream flow
- 3. Calculating the quantitative contribution of land use and climate change to stream flow changes
- Validating the results with the statistical trend analysis i.e. Mann-Kendall test (for P and ETo), and the land use change analysis i.e. Max-likelihood classification on multi-temporal LANDSAT imageries

(†)

CC

Method (2) : Step 2 and Step 3

 Adapted from Tomer and Schilling framework (2009), "A simple approach to distinguish land-use and climate-change effects on watershed hydrology". They used a fraction of excess water (Pex) and excess energy (Eex) to assess the attribution of changes in stream flow to land use and climate change.

- The resultant length (R) indicates the magnitude of the changes with a higher resultant indicating a higher magnitude
- The angle of change (θ) indicates the magnitude of the contribution of LUC and CC with a higher angle reflecting a higher contribution of CC
- ✓ The relative attribution of changes in stream flow to LUC and CC in percentage (%)

Results (1) : Change point detection on Streamflow

Results (2) : Attribution Analysis

Results (3) : Result Validation

Mann-Kendall Trend test for climate variables

Catchment	Variables	MKstat	Sig α=0.1
	Rainfall	0.82	NS
Pidekso	ETo	-0.92	NS
	Rainfall	0.07	NS
Samin	ETo	-0.92	NS
	Rainfall	-0.87	NS
Madiun	ETo	-1.09	NS
	Rainfall	-2.44	S
Kening	ETo	-1.09	NS

- Inclining trend of settlements and seasonal-crop agricultural area (i.e. IF and NIF), declining trend of tree-dominated area (i.e. F and MP)
- ✓ Dramatic LUC was occurred for the period of 1994-2002

Conclusions

- Changes in stream flow can be mainly attributed to land use change rather than climate change for the study catchments except in the Kening catchment.
- The results are in line with the results of the Mann-Kendall trend analysis for climate variables (i.e. P has significantly changed only for Kening catchment (-) and ETo has not significantly changed for all catchments) and with the results of land use change analysis which found to be significant for all catchments in particular during the period 1994 – 2002 (i.e. when the abrupt changes in stream flow were found).
- Our three measures successfully quantified the relative attribution of changes in stream flow to land use change and climate variability.
- The proposed method needs more practical applications across different climatic regions to make the approach more reliable and robust.

UNIVERSITY OF TWENTE.

Reference

 Tomer, M. D., & Schilling, K. E. (2009). A simple approach to distinguish land-use and climate-change effects on watershed hydrology. Journal of Hydrology, 376(1-2), 24-33

Further Information

1. Hero Marhaento	PhD Candidate	Email : h.marhaento@utwente.nl Office : University of Twente
2. Martijn J. Booij	Assistant Professor	Email : m.j.booij@utwente.nl Office : University of Twente