

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

Application of polar orbiter products in weather forecasting
Using open source tools and standards

ADAGUC & PyTROLL

Maarten Plieger Ernst de Vreede

Royal Netherlands Meteorological Institute (KNMI) R&D Information and Observation Technology

Many thanks to:

P. de Valk¹, F. Debie¹, M. Raspaud², A. Dybbroe²

¹KNMI Royal Netherlands Meteorological Institute ²SMHI Swedish Meteorological and Hydrological Institute

Application of polar orbiters for weather forecasting?

Till 2011, KNMI operated a satellite receiving station for polar orbiters, but use of polar satellite data in the weather office was limited:

- Data availability was too irregular in space and time
- Some orbits were missed due to simultaneous reception of other satellite data
- Accessibility and usability was difficult
- Alternatives like Meteosat 9 were easier to use in an operational environment.

Use of polar orbiter data in weather office is still limited!

EUMETCAST, open standards and open tools

- Nowadays, polar orbiter data is available via EUMETCAST on regular basis
- Polar orbiter products have improved
 - Higher resolution, more spectral bands (e.g. Suomi NPP VIIRS)
- Open tools and standards are available and have improved
 - Pytroll can help reading data, create meteorological products and predict orbit locations
 - ADAGUC can help serving geographical data on the web in an accessible way

Time to explore the possibility to enhance the usage of polar satellite data for weather forecasting

Plan: Read satellite data with Pytroll, convert to gridded NetCDF for ADAGUC

PyTROLL

 A community driven FOSS project initiated by DMI and SMHI in 2009

- PyTROLL

 http://pytroll.org
- Free and open source python modules for the reading, interpretation, and writing of weather satellite data
 - pyresample for resampling satellite data
 - mipp for reading weather satellite data
 - mpop for processing weather satellite data
 - python-bufr for reading bufr files
 - pycoast for putting coastlines, borders and rivers on an image
 - pyorbital for computing satellite orbital parameters and reading TLE's

ADAGUC Server and Viewer

Geographical information system to visualize netCDF files via the web

- Web Map Service and Web Coverage Service
- Developed at KNMI (2009 till present)
- Server: C++ application
- Viewer/Client: JavaScript application
- NetCDF4, HDF5 and OpenDAP
- Multi dimensional data supported!
- Can serve true color data (1 byte per channel, RGBA)
- Very fast nearest neighbour reprojection (C++)

Atmospheric <u>Data Access</u>

for the

<u>Geospatial User Community</u>

ADAGUC: Web Map and Web Coverage server

DATA WMS/WCS

Data from VIIRS instrument on the Suomi NPP Satellite

- Suomi NPP Satellite
 - Suomi: Named after meteorologist Verner E. Suomi
 - NPP: National Polar-orbiting Partnership (NASA, NOAA, Defense)
 - Sun-synchronous orbit, 824 km height, 14 orbits per day
 - Launched at 28 October 2011
 - Instruments: ATMS, CrlS, OMPS, CERES and VIIRS

VIIRS instrument

- Visible Infrared Imaging Radiometer Suite (VIIRS)
- 22 spectral band scanning radiometer
 - visible and infrared bands
- 750 meter resolution, ~3000 km swath width, covers earth in 2 days

Effects of geographic projections (from latlon)

Effects of geographic projections (from stereographic)

Finding the optimal projection to store an orbit in a regular grid

- Requirements: retain instrument resolution of 750m and minimize the amount of overhead pixels on the edges (nodata)
- Use proj4 oblique Mercator projection (omerc)
 - Use brute force to find optimal projection parameters
 - Iterate longitude of origin, latitude of origin, alpha and gamma parameters

Like space oblique Mercator developed by John P. Snyder, Alden Partridge Colvocoresses and John L. Junkins in 1976

Oblique Mercator Projection

Oblique mercator

LatLon

Lambert Stereographic

Pytroll products from Suomi NPP VIIRS instruments

Meteosat 9 Cinesat Ash

Suomi NPP VIIRS Ash

Forecasting orbits with pyorbital

- Orbit trajectory can be calculated with PyTROLL's pyorbital based on time
- With known swath width and inclination the swath footprint can be calculated
- Time of overpass and orbit number is forecasted every hour, for 48 hr in advance

http://geoservices.knmi.nl/nppviirs/

Conclusions

- Pytroll is suited to read and resample polar orbiter satellite data and create derived products
- NetCDF with true color RGBA is suited to store true color satellite products
- Proj4 Oblique Mercator projection is suited to store swaths in regular grids
 - > Still to check how space Mercator (+proj=lsat) performs...
- List of current and future overpasses is useful
- ADAGUC is able to render large true color NetCDF files on the web as OGC WMS service
 - > Open tools and Open standards become mature
- Suomi NPP VIIRS are now available to the Weather office!
 - Provides added value over Meteosat 9 in polar regions like Iceland

The next slides are detail slides

Forecasting orbits with pyorbital

- Forecasted swath data is stored per hour as multiple polygons in NetCDF files
- Data is served with ADAGUC WMS Server
- Data extraction for a certain point in time can be done with GetFeatureInfo
- ADAGUC can return a timeseries JSON file with all overpass hits for a location.
- Results are presented to the user in a table which is clickable

JSON timeseries showing overpasses for a location

Converting VIIRS products to NetCDF4

- Extract EUMETCAST bzip2 files, the HDF5 files can be used in PyTROLL
 - Using the "npp compact" reader
 - Estimate best geographic projection, so orbit fits in a regular grid
 - Resample each orbit to this regular grid with its own custom projection.
 - > Regular grids can be drawn in ADAGUC very fast
 - Create products, like ash, dust, fog, natural, truecolor, nightcolor, green snow, red snow, etc...
 - Store products as regular grid using true color rgba in a NetCDF file
 - > Using unsigned integer, 4 bytes wide for R, G, B and A
 - Serve files with ADAGUC server
 - View Web Map Service in ADAGUC viewer