

Novel Flood Detection and Analysis Method Using Recurrence Property

Dadiyorto Wendi (1,2,3), Bruno Merz (2), and Norbert Marwan (3)

(1) University of Potsdam, Institute of Earth and Environmental Science, Potsdam-Golm 14476, Germany, (2) GFZ German Research Centre for Geosciences, Section 5.4 Hydrology, Potsdam 14473, Germany, (3) Potsdam Institute for Climate Impact Research, Potsdam 14412, Germany

Temporal changes in flood hazard are known to be difficult to detect and attribute due to multiple drivers that include processes that are non-stationary and highly variable. These drivers, such as human-induced climate change, natural climate variability, implementation of flood defence, river training, or land use change, could impact variably on space-time scales and influence or mask each other. Flood time series may show complex behavior that vary at a range of time scales and may cluster in time.

This study focuses on the application of recurrence based data analysis techniques (recurrence plot) for understanding and quantifying spatio-temporal changes in flood hazard in Germany. The recurrence plot is known as an effective tool to visualize the dynamics of phase space trajectories i.e. constructed from a time series by using an embedding dimension and a time delay, and it is known to be effective in analyzing non-stationary and non-linear time series. The emphasis will be on the identification of characteristic recurrence properties that could associate typical dynamic behavior to certain flood situations.