Geophysical Research Abstracts Vol. 18, EGU2016-10970, 2016 EGU General Assembly 2016 © Author(s) 2016. CC Attribution 3.0 License.

Volatility of \mathbf{NH}_3 from internally mixed sodium succinate-($\mathbf{NH}_4)_2\mathbf{SO}_4$ particles

Na Wang and Yunhong Zhang

Institute of Chemical Physics, School of Chemistry, Beijing Institute of Technology, Beijing, China(yhz@bit.edu.cn)

Contributing the complicacy of atmospheric constituents, aerosol particles may undergo complicated heterogeneous reactions that have profound consequences on their hygroscopic properties and volatility. Ammonia (NH₃) is a ubiquitous trace atmospheric gas in the troposphere and has negative effects on human health and climate forcing of ambient aerosols. In addition, atmospheric cycle of NH₃ is complex in atmosphere, therefore it necessary to get insights to the complexity of gas-to-aerosol NH₃ partitioning, which results in large uncertainties in the sources and distributions of NH₃. By using in-situ Fourier transform infrared spectroscopy and attenuated total reflection (FTIR-ATR), we report here the volatility of NH₃ from the laboratory generated sodium succinate with ammonium sulfate ((NH₄)₂SO₄) at a 1:1 molar ratio as well as its effect on the hygroscopicity of the mixtures. The loss of the NH₄⁺ peak at 1451cm⁻¹ and the formation of peaks at 1718 and 1134 cm⁻¹ due to C = O stretching asymmetric vibration of -COOH and ν_3 (SO₄²⁻) stretching of sodium sulfate indicate that sodium succinate reacts with (NH₄)₂SO₄, releasing NH₃ and forming succinic acid and sodium sulfate on dehydration process. The formation of less hygroscopic succinic acid and volatility of NH3 in mixtures leads to a significant decrease in the total water content. To the best of our knowledge, this is the first report of the reaction between $(NH_4)_2SO_4$ and dicarboxylate salts, which may represent an important particle-gas partitioning for ammonia and thus elucidate another underlying ammonia cycle in atmosphere. These results could be helpful to understand the mutual transformation process of dicarboxylic acids and dicarboxylate salts.