

Estimating impact of different GOSAT CH_4 retrievals and OH concentrations on CH_4 flux inversions

Ilya Stanevich (1), Kimberly Strong (1), Dylan Jones (1), Feng Deng (1), Kevin Wecht (2), Andre Butz (3), Robert Parker (4), Paul Wennberg (5), Debra Wunch (1,5), and Coleen Roehl (5)

(1) University of Toronto, Toronto, Canada, (2) Harvard University, Cambridge, United States, (3) Karlsruhe Institute of Technology, Karlsruhe, Germany, (4) University of Leicester, Leicester, United Kingdom, (5) California Institute of Technology, Pasadena, United States

Identifying global CH_4 sources and their emissions is important for understanding the processes that govern the increase of CH_4 in the atmosphere. Differences between satellite retrievals used in inversion analyses can provide varying estimates of global CH_4 emissions. Although the lifetime of CH_4 is about 10 years, discrepancies in the distribution of the hydroxyl radical (OH), will also influence optimized CH_4 emissions. Inversion analyses using the GEOS-Chem four-dimensional variational (4D-Var) data assimilation system are performed for the period from January to December 2010 to assess the impact of the GOSAT CH_4 Full Physics and Proxy retrievals and discrepancies in OH fields in GEOS-Chem on regional CH_4 emission estimates. We compare the performance of the retrievals and show the sensitivity of the inferred emissions to the spatial coverage of the retrievals. We also show that the seasonality of the emission estimates is sensitive to the imposed OH distribution. We find that neither retrieval product corrects well for regional biases between measurements and the optimized CH_4 fields, particularly, in winter months at high latitudes with sparse retrieval coverage. The latter highlights the challenge of quantifying CH_4 emissions at subcontinental scales with the current observing network.