

Applications of advanced model of O₂ and O₃ photolysis in the mesosphere and lower thermosphere

Valentine Yankovsky

Saint-Petersburg State University, Institute for Physics, Atmospheric physics, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia (valentine.yankovsky@spbu.ru)

In the YM2011 model of excited products of O₃ and O₂ photolysis in the MLT of the Earth the processes of energy transfer among electronically-vibrationally excited singlet levels O₂(b1 SIGMA, v=0–2), O₂(a1Δ, v=0–5), vibrationally excited levels O₂(X3 SIGMA, v=1–35) of the O₂ molecules in the ground electronic state, and also excited atomic oxygen O(1D) were considered. For these excited levels the corresponding system of 45 kinetic balance equations was solved. Besides the O₃ photolysis in Hartley spectral band, we also considered the photolysis in the Chappuis, Huggins, and Wulf spectral bands in the interval of 200–900 nm and the photolysis of O₂ in Schumann–Runge continuum and Lyman-alpha line H atom, as well as resonant absorption of solar radiation in 629, 688 and 762 nm bands by O₂.

Based on YM2011 model we have solved several applied tasks. We proposed and justified the methods of retrieving the atomic oxygen and ozone vertical distributions from the observation of emissions of the excited oxygen molecules and O(1D) atom. In other words, we propose to retrieve the [O(3P)] and [O₃] using the proxies. We have tested 5 excited components, namely O₂(b1 SIGMA, v=0, 1, 2), O₂(a1Δ, v=0) and O(1D) as the proxies of [O₃] and [O(3P)] in the MLT region. The sensitivity study and uncertainty analysis enable us to conclude that the optimal proxies for [O(3P)] retrieval are emissions from O₂(b1 SIGMA, v=2) and O₂(b1 SIGMA, v=0) in the altitude range 90 – 140 km and for [O₃] retrieval – emissions from O₂(b1 SIGMA, v=1) and O₂(a1Δ, v=0) at 50 – 98 km.

YM2011 model enables us to calculate altitude profiles O₂(X3 SIGMA, v) concentrations for different vibrational levels up to v = 35. In particular, the altitude and latitudinal distributions of O₂(X3 SIGMA, v=1) molecules have been used for the accurate calculation of the H₂O(010) state population as it was done for [H₂O] retrievals from the SABER/TIMED satellite broadband measurements in the 6.3 μm H₂O band.