

Numerical evaluation of subsoil diffusion of ¹⁵N labelled denitrification products during employment of the ¹⁵N gas flux method in the field

Reinhard Well, Caroline Buchen, Dominika Lewicka-Szczebak, and Nicolas Ruoss Thünen-Institut, Agrarklimaschutz, Braunschweig, Germany (reinhard.well@ti.bund.de)

Common methods for measuring soil denitrification in situ include monitoring the accumulation of ¹⁵N labelled N₂ and N₂O evolved from ¹⁵N labelled soil nitrate pool in soil surface chambers. Gas diffusion is considered to be the main accumulation process. Because accumulation of the gases decreases concentration gradients between soil and chamber over time, gas production rates are underestimated if calculated from chamber concentrations. Moreover, concentration gradients to the non-labelled subsoil exist, inevitably causing downward diffusion of ¹⁵N labelled denitrification products. A numerical model for simulating gas diffusion in soil was used in order to determine the significance of this source of error. Results show that subsoil diffusion of ¹⁵N labelled N₂ and N₂O – and thus potential underestimation of denitrification derived from chamber fluxes - increases with cover closure time as well as with increasing diffusivity. Simulations based on the range of typical gas diffusivities of unsaturated soils show that the fraction of ¹⁵N labelled N₂ and N₂O. Field experiments for measuring denitrification with the ¹⁵N gas flux method were conducted. The ability of the model to predict the time pattern of gas accumulation was evaluated by comparing measured ¹⁵N₂ concentrations and simulated values.