Variations of $\delta^{2} \mathbf{H}$ in an idealised extratropical cyclone

Marina Dütsch, Stephan Pfahl, and Heini Wernli
Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland (marina.duetsch@env.ethz.ch)

Numerical model simulations of stable water isotopes help to improve our understanding of the complex processes driving isotopic variability in atmospheric waters. We use the isotope-enabled COSMO model to study the governing mechanisms of $\delta^{2} \mathrm{H}$ variations in an idealised extratropical cyclone. A set of experiments with differing initial conditions of $\delta^{2} \mathrm{H}$ in vapour and partially deactivated isotopic fractionation allows us to quantify the relative roles of cloud fractionation and vertical and horizontal advection for the simulated $\delta^{2} \mathrm{H}$ signals associated with the cyclone and fronts. Horizontal transport determines the large-scale pattern of $\delta^{2} \mathrm{H}$ in both vapour and precipitation, while fractionation and vertical transport are more important on a smaller scale, near the fronts. During the passage of the cold front fractionation leads to a V-shaped trend of $\delta^{2} \mathrm{H}$ in precipitation and vapour, which is, for vapour, superimposed on a gradual decrease caused by horizontal advection.

