Geophysical Research Abstracts Vol. 18, EGU2016-14958, 2016 EGU General Assembly 2016 © Author(s) 2016. CC Attribution 3.0 License.

Urban Climate Effects on Air Pollution and Atmospheric Chemistry

Tara Rasoul, William Bloss, and Francis Pope

School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, United Kingdom (TXR326@bham.ac.uk)

Tropospheric ozone, adversely affects the environment and human health. The presence of chlorine nitrate $(CINO_2)$ in the troposphere can enhance ozone (O_3) formation as it undergoes photolysis, releasing chlorine reactive atoms (CI) and nitrogen dioxide (NO_2) , both of which enhance tropospheric ozone formation. The importance of new sources of tropospheric $CINO_2$ via heterogeneous processes has recently been highlighted. This study employed a box model, using the Master Chemical Mechanism (MCM version 3.2) to assess the effect of $CINO_2$ on air quality in urban areas within the UK. The model updated to include $CINO_2$ production, photolysis, a comprehensive parameterisation of dinitrogen pentoxide (N2O5) uptake, and $CINO_2$ production calculated from bulk aerosol composition. The model simulation revealed the presence of $CINO_2$ enhances the formation of NO_2 , organic peroxy radical (CH3O₂), O_3 , and hydroxyl radicals (OH) when compared with simulations excluding $CINO_2$. In addition, the study examined the effect of temperature variation upon $CINO_2$ formation. The response of $CINO_2$ to temperature was analysed to identify the underlying drivers, of particular importance when assessing the response of atmospheric chemistry processes under potential future climates.