Dispersion relations of short surface gravity waves over vertically sheared currents from stereo-video measurements

Charles Peureux and Fabrice Ardhuin
Laboratoire d'Océanographie Physique et Spatiale, UMR 6523 CNRS/Ifremer/UBO/IRD, Plouzané, France (cpeureux@ifremer.fr)

The stereo-video reconstuction method [Leckler et al. 2015] allows now for the full reconstruction of 3D frequencywavenumber spectra of short waves. A new field campaign in 2013 on the Katsiveli platform (Black Sea) provided such spectra in various wind and waves conditions, and particularly a stormy event, after which very mature waves had been generated. The short waves energies are found to be mostly located around a dispersion relation of the form,

$$
\omega(\vec{k})=\sqrt{g k \tanh (k H)}+\vec{k} \cdot \vec{U}_{\mathrm{eff}}
$$

The effective advection velocity [Kirby and Chen 1989] $\vec{U}_{\text {eff }}(k)$ integrates contributions from both the Stokes drift and quasi-eulerian current [Groeneweg and Klopman 1998]. We find that the effective drift velocity has a very weak wavenumber dependancy, as a result the eulerian current must be vertically sheared. This shear is relevant to the breaking of small scale waves [Banner and Phillips 1974]. It is possible that in field conditions the wind drift is much less important than in the laboratory.

Bibliography Banner, M. L. and Phillips, O. M., On the incipient breaking of small scale waves, J. Fluid Mech., 1974, 65, 647.
Groeneweg, J. and Klopman, G., Changes of the mean velocity profiles in the combined wave-current motion described in a GLM formulation, J. Fluid Mech., 1998, 370, 271-296.
Kirby, J. T. and Chen, T. M., Surface waves on vertically sheared flows : Approximate dispersion relations, J. Geophys. Res., 1989, 94, 1013.
Leckler, F., Ardhuin, F., Peureux, C.,Benetazzo, A., Bergamasco, F. and Dulov, V., Analysis and interpretation of frequency-wavenumber spectra of young wind-waves, J. Phys. Oceanogr., 2015, 45, 2484-2496.

