The role of forest floor and trees to the ecosystem scale methane budget of boreal forests

Mari Pihlatie (1), Elisa Halmeenmäki (1), Olli Peltola (1), Iikka Haikarainen (1), Jussi Heinonsalo (2), Minna Santalahti (1,2), Anuliina Putkinen (1), Hannu Fritze (3), Otmar Urban (4), and Katerina Machacova (4)
(1) University of Helsinki, Department of Physics, Helsinki, Finland , (2) University of Helsinki, Department of Food and Environmental Sciences, Helsinki, Finland, (3) Natural Resources Institute Finland, Vantaa, Finland, (4) Global Change Research Centre, Brno, Czech Republic

Boreal forests are considered as a sink of atmospheric methane (CH\textsubscript{4}) due to the activity of CH\textsubscript{4} oxidizing bacteria (methanotrophs) in the soil. This soil CH\textsubscript{4} sink is especially strong for upland forest soils, whereas forests growing on organic soils may act as small sources due to the domination of CH\textsubscript{4} production by methanogens in the anaerobic parts of the soil. The role of trees to the ecosystem-scale CH\textsubscript{4} fluxes has until recently been neglected due to the perception that trees do not contribute to the CH\textsubscript{4} exchange, and also due to difficulties in measuring the CH\textsubscript{4} exchange from trees. Findings of aerobic CH\textsubscript{4} formation in plants and emissions from tree-stems in temperate and tropical forests during the past decade demonstrate that our understanding of CH\textsubscript{4} cycling in forest ecosystems is not complete. Especially the role of forest canopies still remain unresolved, and very little is known of CH\textsubscript{4} fluxes from trees in boreal region.

We measured the CH\textsubscript{4} exchange of tree-stems and tree-canopies from pine (\textit{Pinus sylvestris}), spruce (\textit{Picea abies}) and birch (\textit{Betula pubescens}, \textit{Betula pendula}) trees growing in Southern Finland (SMEAR II station) on varying soil conditions, from upland mineral soils to paludified soil. We compared the CH\textsubscript{4} fluxes from trees to forest-floor CH\textsubscript{4} exchange, both measured by static chambers, and to CH\textsubscript{4} fluxes measured above the forest canopy by a flux gradient technique. We link the CH\textsubscript{4} fluxes from trees and forest floor to physiological activity of the trees, such as transpiration, sap-flow, CO\textsubscript{2} net ecosystem exchange (NEE), soil properties such as temperature and moisture, and to the presence of CH\textsubscript{4} producing methanogens and CH\textsubscript{4} oxidizing methanotrophs in trees or soil.

The above canopy CH\textsubscript{4} flux measurements show that the whole forest ecosystem was a small source of CH\textsubscript{4} over extended periods in the spring and summer 2012, 2014 and 2015. Throughout the 2013-2014 measurements, the forest floor was in total a net sink of CH\textsubscript{4}, with variation between high CH\textsubscript{4} uptake in the dominating dry upland areas and high emissions from the few wet spots of the forest. All the studied tree species emitted small amounts of CH\textsubscript{4} from the stems and shoots, with emission rates depending on the season, tree species and soil conditions. Especially, CH\textsubscript{4} emissions from birch canopies were high and can therefore contribute significantly to the ecosystem-scale CH\textsubscript{4} fluxes. Processes behind the canopy and stem CH\textsubscript{4} emission remain unresolved, however, ongoing analysis of the methanogens and methanotrophs within the plant-soil systems will reveal whether CH\textsubscript{4} production or consumption is of microbial origin. Also, comparison of the CH\textsubscript{4} fluxes from trees and forest floor to sap-flow, transpiration, and NEE as well as soil parameters will help to explain the seasonality and mechanisms involved in the CH\textsubscript{4} emissions.