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In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for
multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0–
5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm, 100–200 cm depth intervals (Arrouays et al., 2014). Legacy soil
data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons
or for layers at varying soil depth and with non-constant thickness (support).

This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses
(e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvan-
tage of this approach is that the predictions for different depths are computed independently from each other so that
the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common
depth is ignored in this approach (Orton et al. 2016).

A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes
soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then
ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support
of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a
separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.)
Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting
covariates for the spatial mean function is a formidable task.

A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses
of soil data. geoAM extend the scope of the linear model with spatially correlated errors to account for nonlinear ef-
fects of covariates by fitting componentwise smooth, nonlinear functions to the covariates (additive terms). REML
estimation of model parameters and computing best linear unbiased predictions (BLUP) builds in the geoAM
framework on the fact that both geostatistical and additive models can be parametrized as linear mixed models
Wand, 2003. For 3D-DSM analysis of soil data, it is natural to model depth profiles of soil properties by additive
terms of soil depth. Including interactions between these additive terms and covariates of the spatial mean function
allows to model spatially varying depth profiles. Furthermore, with suitable choice of the basis functions of the
additive term (e.g. polynomial regression splines), non-constant support of the soil data can be taken into account.
Finally, boosting (Bühlmann and Hothorn, 2007) can be used for selecting covariates for the spatial mean function.
The presentation will detail the geoAM approach and present an example of geoAM for 3D-analysis of legacy soil
data.
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