

Comparison of floods non-stationarity detection methods: an Austrian case study

Jose Luis Salinas, Alberto Viglione, and Günter Blöschl

Vienna University of Technology, Institute of Hydraulic Engineering and Water Resources Management, Centre for Water Resource Systems, Vienna, Austria (salinas@hydro.tuwien.ac.at)

Non-stationarities in flood regimes have a huge impact in any mid and long term flood management strategy. In particular the estimation of design floods is very sensitive to any kind of flood non-stationarity, as they should be linked to a return period, concept that can be ill defined in a non-stationary context. Therefore it is crucial when analyzing existent flood time series to detect and, where possible, attribute flood non-stationarities to changing hydroclimatic and land-use processes.

This work presents the preliminary results of applying different non-stationarity detection methods on annual peak discharges time series over more than 400 gauging stations in Austria. The kind of non-stationarities analyzed include trends (linear and non-linear), breakpoints, clustering beyond stochastic randomness, and detection of flood rich/flood poor periods.

Austria presents a large variety of landscapes, elevations and climates that allow us to interpret the spatial patterns obtained with the non-stationarity detection methods in terms of the dominant flood generation mechanisms.