

Using reconstructions of the global peat C balance over the Holocene to constrain the timing and magnitude of anthropogenic land use emissions

Benjamin Stocker (1), Zicheng Yu (2), Charly Massa (3), Renato Spahni (4), Colin Prentice (1), and Fortunat Joos (4)

(1) Imperial College, Department of Life Sciences, London, United Kingdom (b.stocker@imperial.ac.uk), (2) Earth & Environmental Sciences Lehigh University 31 Williams Drive Bethlehem, PA 18015 U.S.A., (3) Department of Geography, University of Hawai [U+02BB] i, Mānoa, Honolulu, Hawaii, (4) Climate- and Environmental Physics, University of Berne, Bern, Switzerland

Major circumpolar peatlands of the northern hemisphere have established over the last 14 kyr, with the majority of peat C sequestered during the Holocene. Today, this C storage amounts to 500-600 GtC. In spite of this substantial impact on the C cycle, independent records of the total terrestrial C balance suggest a small long-term trend over the last 6 kyr. The advent of agriculture, associated land use change, and resulting cumulative CO_2 emissions of 50-350 GtC have occurred during a period of continued C sequestration in peatlands. Relatively small variations in the total terrestrial C balance have thus been interpreted to indicate a coincidental timing and a similar magnitude of these compensating fluxes and to lend support for upper-end estimates of preindustrial land use emissions.

Here, we test this hypothesis by combining observation-based reconstructions of the terrestrial C balance (ΔC) and peat storage (ΔC_{peat}) with new results from process-based global land C cycle models that hindcast peat C dynamics and CO₂ emissions from anthropogenic land use change (ΔC_{LUC}) following a set of contrasting land use reconstructions. Recent data compilations of peat C accumulation histories allow us to provide an improved temporal resolution of observation-based ΔC_{peat} . We assess the terrestrial C budget $\Delta C = \Delta C_{peat} + \delta$ for different periods in the Holocene and in the last millennium and confront ΔC_{LUC} with the budget residual δ .

We find that the combination of ΔC_{peat} and ΔC and their temporal variations provide additional constraints on ΔC_{LUC} estimates that have thus far not been taken into account. Between 11-7 kyr BP, ΔC_{peat} alone accounts for the majority of ΔC , incompatible with upper-end ΔC_{LUC} estimates. Between 7-5 kyr BP and 5-2 kyr BP, the budget reveals a substantial land C source, but all model-based estimates of ΔC_{LUC} fall short of explaining the magnitude of δ . ΔC reveals a relatively stable overall C balance during the last millennium before 1750, but substantial C loss from land thereafter. The combination of ΔC_{peat} and ΔC estimates thus support land use reconstructions with negligible ΔC_{LUC} before 7 kyr BP and a substantial fraction of ΔC_{LUC} occurring after Industrialisation.